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ABSTRACT. If P(z) is a polynomial of degree m, having all its zeros in the
disk |z| < k, k > 1, then it was shown by Govil [Proc. Amer. Math. Soc. 41,
no. 2 (1973), 543-546] that
, n
max [P 2 3
In this paper, we obtain generalization as well as improvement of above in-
equality for the polynomial of the type P(z) = co + Y p—pcv2”, 1 < < n.
Also we generalize a result due to Dewan and Mir [Southeast Asian Bull.
Math. 31 (2007), 691-695] in this direction.

P(2)].
o lgllgl ()]

1. Introduction and statement of results. If P(z) is a polynomial of
degree n and P’(z) its derivative, then according to a famous result known
as Bernstein’s inequality (for reference see [1]), we have
(1.1) maX‘P/(z)’ < nmax |P(2)|.
|z|=1 |z|=1

For the polynomial P(z), it is well known as a simple consequence of
maximum modulus principle (for reference see [7, p. 158, problem 269])
that for R > 1,

(1.2) max |P(z)| < R" max |P(z)].

|z|=R |2=1
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Both the inequalities (1.1) and (1.2) are sharp and equality holds for P(z) =
az", where |a] = 1.

Turan [9] considered that if P(z) is a polynomial of degree n, having all
its zeros in |z| < 1, then
(1.3) max |P/(2)| > = max |P(2)|.

|z|=1 2 |z|=1

The result is best possible and equality holds for P(z) = « + 2", where
laf = 18].

As a generalization of inequality (1.3), Govil [3] proved the following
result.

Theorem A. If P(z) is a polynomial of degree n, having all its zeros in
the disk |z| < k, k > 1, then

n
1.4 P(2)] > P(z)|.
(1.4) max |P'(2)| 2 g max| P(2)|

The result is best possible and equality holds for P(z) = (2" + k™).

For the polynomial not vanishing in |z| < k, k < 1, Govil [4] proved that
if P(z) has all its zeros on |z| = k, k < 1, then

(1.5) max Id

||

max |P(2)].

n
<
()] < En 4 kn=lz=1

While seeking for the better bound of the inequality (1.5), recently Dewan
and Mir [2] proved the following result under the same hypothesis.

Theorem B. If P(z) =Y 7_,c,2" is a polynomial of degree n, having all
its zeros on |z| =k, k <1, then

n n|ea| k2 + |en_1]
1.6 P < — P(2)].

In this paper, we consider a class of polynomials P(z) =co+ ) v=pCvz”,
1 < pu < n and generalize as well as improve upon Theorem A and also
generalize Theorem B by proving the following results.

Theorem 1. If P(z) = co+) ) ,cv2", 1 < p < nis a polynomial of degree
n, having all its zeros in the disk |z| < k, k > 1, then

n
1.7 P'(2)] > — 2 max|P(z)].
(1.7) max | P'(2)] 2 3y max | P(2)|

The result is best possible and equality holds for
P(z) = (2" 7+ + kn—uﬂ)n%w .

Remark 1. If we take 4t = 1 in Theorem 1, then inequality (1.7) reduces
to inequality (1.4) due to Govil [3].
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Theorem 2. If P(z) = cp2" + > 7 cn02" ", 1 < p < nis a polynomial
of degree n, having all its zeros on |z| = k, k < 1, then

max |P'(2)|

LN nlen| K* 4 plen—p| k*1

ket \ plen—p| (14 kA7) 4+ ey BRH(L 4 BREL)
Remark 2. If we take u = 1 in Theorem 2, then the above inequality
reduces to the inequality (1.6) due to Dewan and Mir [2].

max |P(2)] .
|z|=1

Theorem 3. If P(z) = co+),)_,cv2”, 1 < p < n is a polynomial of degree
n, having all its zeros in the disk |z| < k, k > 1, then
(1.8) max |P'(z)| >

n
—_— P in |P )
|z|=1 = 1 4 kn—ptl {gl'i)l(’ (Z)‘ +|IZI|1£]1€‘ (Z)’}
The result is best possible and equality holds for
P(z) = (z"H L 4 gty

If we choose p = 1 in Theorem 3, then inequality (1.8) reduces to following
result due to Govil [5].

Corollary 1. If P(z) is a polynomial of degree n, having all its zeros in the
disk |z| <k, k > 1, then

n
P’ > P in |P .
max P2 2 1 {mx | PG|+ min P

The result is best possible and equality holds for P(z) = 2" + k™.

2. Lemmas. We need the following lemmas for the proofs of these theo-
rems.

Lemma 1. If P(2) = co+ ) )_,cv2", 1 < < n is a polynomial of degree
n, having all its zeros in the disk |z| < k, k > 1, then for |z| =1

(2.1) KRR QN (2)| < | P(K*2))

where Q(z) = z"P(1/Z).

Proof of Lemma 1. Since the polynomial P(z) has all its zeros in |z| < k,
k > 1, therefore the polynomial F'(z) = P(kz) has all its zeros in the unit
disk |z| < 1. Now if G(z) = 2"F(1/z) = 2"P(k/zZ) = k"Q(z/k), then all
the zeros of G(z) lie in |z| > 1. Since |F(z)| = |G(z)| on |z| = 1, it follows
by maximum modulus principle that |G(z)| < |F(z)| on |z| > 1. Hence for
every complex number \ with |A| > 1, it follows by Rouche’s theorem that
the polynomial G(z) — AF'(z) has all its zeros in |z| < 1. By Gauss—Lucas
theorem the polynomial G’'(z) — AF’(z) has all its zeros in |z| < 1, which
implies

(2.2) }G'(z)} < |F'(z)| for |2 > 1.
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Substituting for F(z) and G(z) in (2.2), we get

(2.3) K" Q (2/k)| < k|P'(kz)| for |z| > 1.

Since ¢y = cp = -+ = ¢,—1 = 0, from (2.3), we get

(2.4) Q' (2/k)| < B> vey(kz)Y#| for 2] > 1.
v=p

In fact (2.4) holds for |z| = 1. But 3°7_ vey(kz)"™ # 0in [z > 1, by
maximum modulus principle it also holds for |z| > 1. Taking kz instead of
z in (2.4), we have

Q' ()] < kM Zvcy(k%)”*“ for |z| > 1/k.
v=p
In particular,
@ (2)] < B Z ve, (K22)V7H| for |z| =1,
v=p

this implies

Q) (2)] < KPTH Zl/c,,(kQ,z)”_l for |z] = 1.

v=p
Consequently
K| Q(2)| < [P(K22)| for 2] = 1.

This completes the proof of Lemma 1. O

Lemma 2. If P(z) =cy + ZZ:M 2V, 1 < pu < mnisa polynomial of degree
n, having all its zeros in the disk |z| < k, k > 1, then

max Q' ()] < K e |P(2)

)

where Q(z) = z"P(1/z).
Proof of Lemma 2. By Lemma 1, we have

/ 1 /
(2.5) ﬁl‘gc!é? ()] < s mex |P'(2)].

Using inequality (1.2) for the polynomial P'(z) with R = k% > 1, we have

max ‘P’(z)’ < k2 max ’P'(z)l :

|2|=k? |2l

Combining this with (2.5), the lemma follows. O
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Lemma 3. If P(z) = cp2" + ) ,cn—02" 7", 1 < p < nis a polynomial of
degree n, having no zero in the disk |z| < k, k <1, then

En—hutl |m\a)1{ ‘P’(z)‘ < Tn‘aa( |Q/(z)

)

where Q(z) = z"P(1/Z).
Proof of Lemma 3. If P(z) has no zero in |z| < k, k < 1, then Q(z) =

2"P(1/Z) has all its zeros in |z| < 1/k, 1/k > 1. Thus applying Lemma 2
to the polynomial Q(z), we get

1
/ /
max [P < max Q'(2)
and the lemma follows. O

Lemma 4. If P(z) is a polynomial of degree n, then for |z| =1

[P+ Q)] < nmax|P(2)]

where Q(z) = z"P(1/Z).

The above lemma is a special case of a result due to Govil and Rahman [6].
Lemma 5. If P(z) =co+>_,_, 2", 1 < p < n is a polynomial of degree
n, having no zero in the disk |z| < k, k > 1, then for |z| =1

-1
pt1 :U|C,u|ku +n‘60‘ P! <o
o {1761 < ()

and
7

n

Cu

€o

Et <1

— )

where Q(z) = z"P(1/z).
The above lemma was given by Qazi [8, Remark and proof of Lemma 1].
Lemma 6. If P(z) = ¢,2" + Zﬁ:“ Cnp2" 7", 1 < p < nis a polynomial of

degree m, having all its zeros on |z| =k, k < 1, then for |z| =1

kll+1+u|c - |
2.6 frt n |cn) n—p } P > 0!
20 {Ncn#|+n|cn|k#—1 |P'(2)] > |Q'(2)|
and

Cn—p
Cn

(2.7) < k",

3=

where Q(z) = z"P(1/z).

Proof of Lemma 6. Since P(z) has all its zeros on |z| = k, k < 1, there-

fore Q(z) = 2" P(1/Z) has all its zeros on |z| = 1/k, 1/k > 1. Now applying
Lemma 5 to polynomial Q(z) and result follows. O
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The following lemma is due to Govil [3].
Lemma 7. If P(z) is a polynomial of degree n and P(z) = Q(z), then for
ol =1

n
m P’ = —m P ,
|z|i}f‘ (z)’ 2 |z\i)1{| ()

where Q(z) = z"P(1/Z).
3. Proofs of the theorems.

Proof of Theorem 1. For every e with || = 1, the polynomial P*(z) =
$(P(z) + €Q(2)) satisfies P*(z) = 2"P*(1/Z), hence by Lemma 7, we have
n

max |[P'(2) +eQ'(2)] = 5 max | P(2) + €Q(2)] -
This implies
|m\i}1{ |P'(z)| + \mli}f Q' (2)] = g\m@}f |P(z) + eQ(2)] .

Choosing the argument of € on right hand side, we get

max | P'(2)| + max |@'(2)| = nmax|P(z)]| .
|z]=1 |z]=1 |z]=1

Which further on applying Lemma 2, gives

max }P'(z)‘ + k" max ’P'(z)’ > nmax |P(2)|
|21=1 l2|=1 |2|=1

and the theorem follows. O

Proof of Theorem 2. Let zy be a point on |z| = 1, such that |Q’(29)| =
max|,|—1 |Q'(2)|, then by Lemma 4, it follows that

(3.1) |P'(20)] + max Q'(2)] < nmax|P(z)].

Combining inequality (3.1) with Lemma 6, we get
1 (u |en—p| + 1 |en| K#1
k=1 \ nlen| kP + plen—ul
which implies
(M len—pl (14 K75 + nen| P71 + k”+1)>
n || k24 4 plep—p| kP1

< nmax|P(2)|.
|z|=1

Inequality (3.2), when combined with Lemma 3, gives

knf,qul H ‘Cn—p| (1 + k/.z—l) +n ’Cn‘ k#—l(l + k/.H—l)
Teal T2 e[ BT

) 1)+ max| Q)] < nmax (o).

652) max |Q'(2)

max |P'(2)|

< nmax |P(z)|.
|z|=1
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This implies

max ‘P ‘
n nlen| K+ plen—p| k*1
P
S T T e e ]
which completes the proof of Theorem 2. O

Proof of Theorem 3. If m = min|,|_, |P(z)|, then for every a with |a| <
1, the polynomial P(z) + am has all its zeros in |z| < k, k > 1. This is
clear if P(z) has a zero on |z| = k, because in that case m = 0 and therefore
P(z) + am = P(z). In case P(z) has no zero on |z| = k, then for every «
with |a| < 1, we have |P(z)| > m|a| on |z| = k and on applying Rouche’s
theorem the result will follow. Thus P(z) + am has all its zeros in |z| < k,
k > 1 and hence, applying Theorem 1 to P(z) + am, we get

maX‘P )| = ax|P( ) +am]|.

1+ k" ptl

Now choosing argument of v on the right hand side and letting || — 1, we
get

I .
This completes the proof of Theorem 3. ([l

Remark 3. For ;4 = n Theorems 1, 2 and 3 hold if polynomial satisfies the
condition |co| < k|ep] .
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