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Inclusion properties of certain subclass
of analytic functions defined
by multiplier transformations

Abstract. Let A denote the class of analytic functions with normalization
f(0) = f

′
(0)− 1 = 0 in the open unit disk U = {z : |z| < 1}. Set

fmλ,`(z) = z +

∞∑
k=2

[
`+ 1 + λ(k − 1)

`+ 1

]m
zk (z ∈ U ; m ∈ N0; λ ≥ 0; ` ≥ 0),

and define fmλ`,µ in terms of the Hadamard product

fmλ,`(z) ∗ fmλ,`,µ(z) =
z

(1− z)µ (z ∈ U ;µ > 0).

In this paper, we introduce several new subclasses of analytic functions
defined by means of the operator Imλ,`,µf(z) = fmλ,`,µ(z)∗f(z) (f ∈ A; m ∈ N0;
λ ≥ 0; ` ≥ 0; µ > 0).

Inclusion properties of these classes and the classes involving the general-
ized Libera integral operator are also considered.

1. Introduction. Let A denote the class of functions of the form:

(1.1) f(z) = z +

∞∑
k=2

akz
k

which are analytic in the open unit disk U = {z : |z| < 1}. If fand g are
analytic in U , we say that f is subordinate to g, written f(z) ≺ g(z), if

2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Subordination, analytic, multiplier transformation, Libera

integral operator.
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there exists an analytic function w in U with w(0) = 0 and |w(z)| < 1 for
z ∈ U such that f(z) = g(w(z)). For 0 ≤ η < 1, we denote by S∗(η), K(η)
and C the subclasses of A consisting of all analytic functions which are,
respectively, starlike of order η, convex of order η and close-to-convex in U
(see, e.g. Srivastava and Owa [18]).

For m ∈ N0 = N ∪ {0}, where N = {1, 2, . . . }, λ ≥ 0 and ` ≥ 0, Cătaş
[3] defined the multiplier transformations Im(λ, `) on A by the following
infinite series

(1.2) Im(λ, `)f(z) = z +
∞∑
k=2

[
`+ 1 + λ(k − 1)

`+ 1

]m
akz

k.

It follows from (1.2) that

(1.3) I0(λ, `) = f(z),

(1.4) (`+ 1)I2(λ, `)f(z) = (`+ 1− λ)I1(λ, `)f(z) + λz(I1(λ, `)f(z))
′
,

λ > 0, and

(1.5) Im1(λ, `)(Im2(λ, `)f(z)) = Im2(λ, `)(Im1(λ, `)f(z))

for all integers m1 and m2.
We note that:

(i) Im(1, `) = Im` (see Cho and Srivastava [4] and Cho and Kim [5]);
(ii) Im(λ, 0) = Dm

λ (m ∈ N0; λ ≥ 0) (see Al-Oboudi [1]);
(iii) Im(1, 0) = Dm (m ∈ N0) (see Sălăgean [17]);
(iv) Im(1, 1) = Im (see Uralegaddi and Somanatha [19]).
Let S be the class of all functions ϕ which are analytic and univalent in

U and for which ϕ(U) is convex and ϕ(0) = 1 and Re{ϕ(z)} > 0 (z ∈ U).
Making use of the principle of subordination between analytic functions,

we introduce the subclasses S∗(η;ϕ), K(η;ϕ) and C(η, δ;ϕ,ψ) of the class
A for 0 ≤ η, δ < 1 and ϕ,ψ ∈ S (cf., e.g., [6], [8] and [12]), which are defined
as follows:

S∗(η;ϕ) =

{
f ∈ A :

1

1− η

(
zf

′
(z)

f(z)
− η

)
≺ ϕ(z), z ∈ U

}
,

K(η;ϕ) =

{
f ∈ A :

1

1− η

(
1 +

zf
′′
(z)

f ′(z)
− η

)
≺ ϕ(z), z ∈ U

}
,

and

C(η, δ;ϕ,ψ) =

{
f ∈ A : ∃g ∈ S∗(η, ϕ) s.t.

1

1− δ

(
zf

′
(z)

g(z)
− δ

)
≺ ψ(z), z ∈ U

}
.
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We note that, for special choices for the functions ϕ and ψ in the above
definitions we obtain the well-known subclasses of A. For examples, we have

(i) S∗
(
η;

1 + z

1− z

)
= S∗(η) (0 ≤ η < 1),

(ii) K
(
η;

1 + z

1− z

)
= K(η) (0 ≤ η < 1)

and

(iii) C
(
0, 0;

1 + z

1− z
;
1 + z

1− z

)
= C.

Setting

fmλ,`(z) = z +
∞∑
k=2

[
`+ 1 + λ(k − 1)

`+ 1

]m
zk (m ∈ N0, λ ≥ 0, ` ≥ 0),

we define a new function fmλ,`,µ(z) in terms of the Hadamard product (or
convolution) by:

(1.6) fmλ,`(z) ∗ fmλ,`,µ(z) =
z

(1− z)µ
(µ > 0; z ∈ U).

Then, motivated essentially by the Choi–Saigo–Srivastava operator [6] (see
also [10], [11], [14], and [15]), we now introduce the operators fmλ,`,µ : A→ A,
which are defined here by

(1.7) Imλ,`,µf(z) = fmλ,`,µ ∗ f(z)

(f ∈ A; m ∈ N0; λ ≥ 0; ` ≥ 0; µ > 0). For a function f(z) ∈ A, given by
(1.1), it is easily seen from (1.7) that

(1.8) Imλ,`,µf(z) = z +
∞∑
k=2

[
`+ 1

`+ 1 + λ(k − 1)

]m (µ)k−1
(1)k−1

akz
k

(m ∈ N0; λ ≥ 0; ` ≥ 0; z ∈ U).
We note that:

(i) I11,0,2f(z) = f(z) and I01,0,2f(z) = zf
′
(z),

and

(ii) Is1,`,µf(z) = Is`,µf(z) (s ∈ R; see Cho and Kim [5]).

In view of (1.8), we obtain the following relations:

(1.9) λz(Im+1
λ,`,µf(z))

′
= (`+ 1)Imλ,`,µf(z)− [λ− (`+ 1)] Im+1

λ,`,µf(z)

(f ∈ A; m ∈ N0; λ > 0; ` ≥ 0; µ > 0) and

(1.10) z(Imλ,`,µf(z))
′
= µImλ,`,µ+1f(z)− (µ− 1)Imλ,`,µf(z)
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(f ∈ A; m ∈ N0; λ ≥ 0; ` ≥ 0; µ > 0). Next, by using the operator Imλ,`,µ, we
introduce the following classes of analytic functions for ϕ,ψ ∈ S, m ∈ N0,
λ ≥ 0, ` ≥ 0, µ > 0 and 0 ≤ η, δ < 1:

Smλ,`,µ(η;ϕ) =
{
f ∈ A : Imλ,`,µf(z) ∈ S∗(η;ϕ)

}
,(1.11)

Km
λ,`,µ(η;ϕ) =

{
f ∈ A : Imλ,`,µf(z) ∈ K(η;ϕ)

}
(1.12)

and

Cmλ,`,µ(η, δ;ϕ,ψ) =
{
f ∈ A : Imλ,`,µf(z) ∈ C(η, δ;ϕ,ψ)

}
.(1.13)

We also have

(1.14) f(z) ∈ Km
λ,`,µ(η;ϕ)⇔ zf

′
(z) ∈ Smλ,`,µ(η;ϕ).

In particular, we set

Smλ,`,µ

(
η;

(
1 +Az

1 +Bz

)α)
= Smλ,`,µ(η;A,B, α)

(0 < α ≤ 1; −1 ≤ B < A ≤ 1) and

Km
λ,`,µ

(
η;

(
1 +Az

1 +Bz

)α)
= Km

λ,`,µ(η;A,B, α)

(0 < α ≤ 1; −1 ≤ B < A ≤ 1).
In this paper, we investigate several inclusion properties of the classes

Smλ,`,µ(η;ϕ), K
m
λ,`,µ(η;ϕ) and Cmλ,`,µ(η, δ;ϕ,ψ) associated with the operator

Imλ,`,µ. Some applications involving these and other classes of integral oper-
ators are also considered.

2. Inclusion properties involving the operator Imλ,`,µ. The following
lemmas will be required in our investigation.

Lemma 1 ([7]). Let ϕ be convex, univalent in U with ϕ(0) = 1 and
Re {βϕ(z) + ν} > 0 (β, ν ∈ C). If p is analytic in U with p(0) = 1, then

p(z) +
zp

′
(z)

βp(z) + ν
≺ ϕ(z) (z ∈ U)

implies that
p(z) ≺ ϕ(z) (z ∈ U).

Lemma 2 ([13]). Let ϕ be convex, univalent in U and w be analytic in U
with Re{w(z)} ≥ 0. If p(z) is analytic in U and p(0) = ϕ(0), then

p(z) + w(z)zp
′
(z) ≺ ϕ(z) (z ∈ U)

implies that
p(z) ≺ ϕ(z) (z ∈ U).

At first, with the help of Lemma 1, we prove the following theorem.
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Theorem 1. Let m ∈ N0, λ > 0, ` ≥ 0, `+ 1 > λ and µ ≥ 1. Then

Smλ,`,µ+1(η;ϕ) ⊂ Smλ,`,µ(η;ϕ) ⊂ Sm+1
λ,`,µ(η;ϕ)

(0 ≤ η < 1; φ ∈ S).

Proof. First of all, we will show that

Smλ,`,µ+1(η;ϕ) ⊂ Smλ,`,µ(η;ϕ).

Let f ∈ Smλ,`,µ+1(η;ϕ) and put

(2.1) p(z) =
1

1− η

(
z(Imλ,`,µf(z))

′

Imλ,`,µf(z)
− η

)
,

where p(z) is analytic in U with p(0) = 1. Using (1.10) and (2.1), we obtain

(2.2) µ
Imλ,`,µ+1f(z)

Imλ,`,µf(z)
= (1− η)p(z) + η + (µ− 1).

Differentiating (2.2) logarithmically with respect to z, we obtain

(2.3)
1

1− η

(
z(Imλ,`,µ+1f(z))

′

Imλ,`,µ+1f(z)
− η

)
= p(z) +

zp
′
(z)

(1− η)p(z) + η + (µ− 1)

(z ∈ U). Applying Lemma 1 to (2.3), it follows that p ≺ ϕ, that is f ∈
Smλ,`,µ(η;ϕ).

To prove the second part, let f ∈ Smλ,`,µ(η;ϕ) and put

h(z) =
1

1− η

(
z(Im+1

λ,`,µf(z))
′

Im+1
λ,`,µf(z)

− η

)
,

where h is analytic in U with h(0) = 1. Then, by using the arguments
similar to those detailed above with (1.9), it follows that h ≺ ϕ. This
completes the proof of Theorem 1. �

Theorem 2. Let m ∈ N0, λ > 0, ` ≥ 0, `+ 1 > λ and µ ≥ 1. Then

Km
λ,`,µ+1(η;ϕ) ⊂ Km

λ,`,µ(η;ϕ) ⊂ Km+1
λ,`,µ (η;ϕ)

(0 ≤ η < 1; φ ∈ S).

Proof. Applying (1.11) and Theorem 1, we observe that

f ∈ Km
λ,`,µ+1(η;ϕ)⇔ Imλ,`,µ+1f(z) ∈ K(η;ϕ)⇔ z(Imλ,`,µ+1f(z))

′ ∈ S∗(η;ϕ)

⇔ Imλ,`,µ+1(zf
′
(z)) ∈ S∗(η;ϕ)

⇔ zf
′
(z) ∈ Smλ,`,µ+1(η;ϕ)

⇒ zf
′
(z) ∈ Smλ,`,µ(η;ϕ)

⇔ Imλ,`,µ(zf
′
(z)) ∈ Sm(η;ϕ)
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⇔ z(Imλ,`,µ(zf(z))
′ ∈ Sm(η;ϕ)

⇔ Imλ,`,µf(z) ∈ K(η;ϕ)

⇔ f(z) ∈ Km
λ,`,µ(η;ϕ)

and

f(z) ∈ Km
λ,`,µ(η;ϕ)⇔ zf

′
(z) ∈ S∗(η;ϕ)

⇒ zf
′
(z) ∈ Sm+1

λ,`,µ(η;ϕ)

⇔ z(Im+1
λ,`,µf(z))

′ ∈ S∗(η;ϕ)

⇔ Im+1
λ,`,µf(z) ∈ K(η;ϕ)

⇔ f(z) ∈ Km+1
λ,`,µ (η;ϕ),

which evidently proves Theorem 2. �

Taking

ϕ(z) =

(
1 +Az

1 +Bz

)α
(−1 ≤ B < A ≤ 1; 0 < α ≤ 1; z ∈ U) in Theorem 1 and Theorem 2, we
obtain the following corollary.

Corollary 1. Let m ∈ N0, λ > 0, ` ≥ 0, `+ 1 > λ and µ ≥ 1. Then

Smλ,`,µ+1(η;A,B;α) ⊂ Smλ,`,µ(η;A,B;α) ⊂ Sm+1
λ,`,µ(η;A,B;α)

(0 ≤ µ < 1; −1 ≤ B < A ≤ 1; 0 < α ≤ 1), and

Km
λ,`,µ+1(η;A,B;α) ⊂ Km

λ,`,µ(η;A,B;α) ⊂ Km+1
λ,`,µ (η;A,B;α)

(0 ≤ µ < 1; −1 ≤ B < A ≤ 1; 0 < α ≤ 1).

By using Lemma 2, we obtain the following inclusion relation of the class
Cmλ,`,µ(η, δ;φ, ψ).

Theorem 3. Let m ∈ N0, λ > 0, ` ≥ 0, `+ 1 > λ and µ ≥ 1. Then

Cmλ,`,µ+1(η, δ;ϕ,ψ) ⊂ Cmλ,`,µ(η, δ;ϕ,ψ) ⊂ Cm+1
λ,`,µ (η, δ;ϕ,ψ)

(0 ≤ η; δ < 1; ϕ,ψ ∈ S).

Proof. We begin by proving that

Cmλ,`,µ+1(η, δ;ϕ,ψ) ⊂ Cmλ,`,µ(η, δ;ϕ,ψ).

Let f ∈ Cmλ,`,µ+1(η, δ;ϕ,ψ). Then, in view of the definition of the class
Cmλ,`,µ+1(η, δ;ϕ,ψ), there exists a function g ∈ Smλ,`,µ+1(η;ϕ) such that

1

1− δ

(
z(Imλ,`,µ+1f(z))

′

Imλ,`,µ+1g(z)
− δ

)
≺ ψ(z) (z ∈ U).
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Now let

p(z) =
1

1− δ

(
z(Imλ,`,µf(z))

′

Imλ,`,µg(z)
− δ

)
,

where p is analytic in U with p(0) = 1. Using the identity (1.10), we obtain

(2.4) [(1− δ)p(z) + δ] Imλ,`,µg(z) + (µ− 1)Imλ,`,µf(z) = µImλ,`,µ+1f(z).

Differentiating (2.4) with respect to z and multiplying by z, we have

(2.5)
(1− δ)zp′(z)Imλ,`,µg(z) + [(1− δ)p(z) + δ] z(Imλ,`,µg(z))

′

= µz(Imλ,`,µ+1f(z))
′ − (µ− 1)z(Imλ,`,µf(z))

′
.

Since g ∈ Smλ,`,µ+1(η;ϕ), by Theorem 1, we know that g ∈ Smλ,`,µ(η;ϕ). Let

q(z) =
1

1− η

(
z(Imλ,`,µg(z))

′

Imλ,`,µg(z)
− η

)
.

Then, using the identity (1.10) once again, we obtain

(2.6) µ
Imλ,`,µ+1g(z)

Imλ,`,µg(z)
= (1− η)q(z) + η + (µ− 1).

From (2.5) and (2.6), we have

1

1− δ

(
z(Imλ,`,µ+1f(z))

′

Imλ,`,µ+1g(z)
− δ

)
= p(z) +

zp
′
(z)

(1− η)q(z) + η + (µ− 1)
.

Since 0 ≤ η < 1, µ ≥ 1 and q ≺ ϕ in U ,

Re {(1− η)q(z) + η + µ− 1} > 0

(z ∈ U). Hence applying Lemma 2, we can show that p ≺ ψ, so that f ∈
Cmλ,`,µ(η; δ;ϕ,ψ).

For the second part, by using the arguments similar to those detailed
above with (1.9), we obtain

Cmλ,`,µ(η, δ;ϕ,ψ) ⊂ Cm+1
λ,`,µ (η, δ;ϕ,ψ).

This completes the proof of Theorem 3. �

3. Inclusion properties involving the integral operator Fc. In this
section, we consider the generalized Libera integral operator Fc (see [16], [2]
and [9]) defined by

(3.1) Fc(f) = Fc(f)(z) =
c+ 1

zc

z∫
0

tc−1f(t)dt

(c > −1; f ∈ A). We first prove the following theorem.

Theorem 4. Let c, λ ≥ 0, m ∈ N0, ` ≥ 0 and µ > 0. If f ∈ Smλ,`,µ(η;ϕ)
(0 ≤ η < 1; ϕ ∈ S), then Fc(f) ∈ Smλ,`,µ(η;ϕ) (0 ≤ η < 1; ϕ ∈ S).
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Proof. Let f ∈ Smλ,`,µ(η;ϕ) and put

(3.2) p(z) =
1

1− η

(
z(Imλ,`,µFc(f)(z))

′

Imλ,`,µFc(f)(z)
− η

)
,

where p is analytic in U with p(0) = 1. From (3.1), we have

(3.3) z(Imλ,`,µFc(f)(z))
′
= (c+ 1)Imλ,`,µf(z)− cImλ,`,µFc(f)(z).

Then, by using (3.2) and (3.3), we have

(3.4) (c+ 1)
Imλ,`,µf(z)

Imλ,`,µFc(f)(z)
= (1− η)p(z) + η + c.

Differentiating (3.4) logarithmically with respect to z and multiplying by z,
we have

p(z) +
zp

′
(z)

(1− η)p(z) + η + c
=

1

1− η

(
z(Imλ,`,µf(z))

′

Imλ,`,µf(z)
− η

)
(z ∈ U).

Hence, by virtue of Lemma 1, we conclude that p ≺ ϕ (z ∈ U), which
implies that Fc(f) ∈ Smλ,`,µ(η;ϕ). �

Next, we derive an inclusion property involving Fc, which is given by the
following theorem.

Theorem 5. Let c, ` ≥ 0, m ∈ N0, λ ≥ 0 and µ > 0. If f ∈ Km
λ,`,µ(η;ϕ)

(0 ≤ η < 1; ϕ ∈ S), then Fc(f) ∈ Km
λ,`,µ(η;ϕ) (0 ≤ η < 1; ϕ ∈ S).

Proof. By applying Theorem 4, it follows that

f(z) ∈ Km
λ,`,µ(η;ϕ)⇔ zf

′
(z) ∈ Smλ,`,µ(η;ϕ)

⇒ Fc(zf
′
(z)) ∈ Smλ,`,µ(η;ϕ)

⇔ z(Fc(f)(z))
′ ∈ Smλ,`,µ(η;ϕ)

⇔ Fc(f)(z) ∈ Km
λ,`,µ(η;ϕ),

which proves Theorem 5. �

From Theorem 4 and Theorem 5, we have the following corollary.

Corollary 2. Let c, ` ≥ 0, m ∈ N0, λ > 0 and µ > 0. If f ∈Smλ,`,µ(η;A,B;α)

(or Km
λ,`,µ(η;A,B;α)) (0 ≤ η < 1; −1 ≤ B < A ≤ 1; 0 < α ≤ 1), then Fc(f)

belongs to the class Smλ,`,µ(η;A,B;α) (or Km
λ,`,µ(η;A,B;α)) (0 ≤ η < 1;

−1 ≤ B < A ≤ 1; 0 < α ≤ 1).

Finally, we prove the following theorem.

Theorem 6. Let c, ` ≥ 0, m ∈ N0, λ > 0 and µ > 0. If f ∈ Cmλ,`,µ(η; δ, ϕ;ψ)
(0 ≤ η; δ < 1; ϕ,ψ ∈ S), then Fc(f) ∈ Cmλ,`,µ(η; δ, ϕ;ψ) (0 ≤ η; δ < 1;
ϕ,ψ ∈ S).
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Proof. Let f ∈ Cmλ,`,µ(η; δ, ϕ;ψ). Then, in view of the definition of the class
Cmλ,`,µ(η; δ, ϕ;ψ), there exists a function g ∈ Smλ,`,µ(η;ϕ) such that

1

1− δ

(
z(Imλ,`,µf(z))

′

Imλ,`,µg(z)
− δ

)
≺ ψ(z) (z ∈ U).

Thus, we put

p(z) =
1

1− δ

(
z(Imλ,`,µFc(f)(z))

′

Imλ,`,µFc(g)(z)
− δ

)
,

where p is analytic in U with p(0) = 1. Since g ∈ Smλ,`,µ(η;ϕ), we see from
Theorem 4 that Fc(g) ∈ Smλ,`,µ(η;ϕ). Using (3.3), we have

[(1− δ)p(z) + δ] Imλ,`,µFc(g)(z) + cImλ,`,µFc(f)(z) = (c+ 1)Imλ,`,µf(z).

Then, by a simple calculations, we get

(c+1)
z(Imλ,`,µf(z))

′

Imλ,`,µFc(g)(z)
= [(1− δ)p(z) + δ] [(1− η)q(z) + η + c]+(1−δ)zp′(z),

where

q(z) =
1

1− η

(
z(Imλ,`,µFc(g)(z))

′

Imλ,`,µFc(g)(z)
− η

)
.

Hence, we have

1

1− δ

(
z(Imλ,`,µf(z))

′

Imλ,`,µg(z)
− δ

)
= p(z) +

zp
′
(z)

(1− η)q(z) + η + c
.

The remaining part of the proof of Theorem 6 is similar to that of Theorem 3
and so we omit it. �
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