Inclusion properties of certain subclass of analytic functions defined by multiplier transformations

Abstract. Let A denote the class of analytic functions with normalization $f(0)=f^{\prime}(0)-1=0$ in the open unit disk $U=\{z:|z|<1\}$. Set

$$
f_{\lambda, \ell}^{m}(z)=z+\sum_{k=2}^{\infty}\left[\frac{\ell+1+\lambda(k-1)}{\ell+1}\right]^{m} z^{k} \quad\left(z \in U ; m \in N_{0} ; \lambda \geq 0 ; \ell \geq 0\right),
$$

and define $f_{\lambda \ell, \mu}^{m}$ in terms of the Hadamard product

$$
f_{\lambda, \ell}^{m}(z) * f_{\lambda, \ell, \mu}^{m}(z)=\frac{z}{(1-z)^{\mu}} \quad(z \in U ; \mu>0) .
$$

In this paper, we introduce several new subclasses of analytic functions defined by means of the operator $I_{\lambda, \ell, \mu}^{m} f(z)=f_{\lambda, \ell, \mu}^{m}(z) * f(z)\left(f \in A ; m \in N_{0}\right.$; $\lambda \geq 0 ; \ell \geq 0 ; \mu>0)$.

Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.

1. Introduction. Let A denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z:|z|<1\}$. If f and g are analytic in U, we say that f is subordinate to g, written $f(z) \prec g(z)$, if

[^0]there exists an analytic function w in U with $w(0)=0$ and $|w(z)|<1$ for $z \in U$ such that $f(z)=g(w(z))$. For $0 \leq \eta<1$, we denote by $S^{*}(\eta), K(\eta)$ and C the subclasses of A consisting of all analytic functions which are, respectively, starlike of order η, convex of order η and close-to-convex in U (see, e.g. Srivastava and Owa [18]).

For $m \in N_{0}=N \cup\{0\}$, where $N=\{1,2, \ldots\}, \lambda \geq 0$ and $\ell \geq 0$, Cătaş [3] defined the multiplier transformations $I^{m}(\lambda, \ell)$ on A by the following infinite series

$$
\begin{equation*}
I^{m}(\lambda, \ell) f(z)=z+\sum_{k=2}^{\infty}\left[\frac{\ell+1+\lambda(k-1)}{\ell+1}\right]^{m} a_{k} z^{k} \tag{1.2}
\end{equation*}
$$

It follows from (1.2) that

$$
\begin{gather*}
I^{0}(\lambda, \ell)=f(z) \tag{1.3}\\
(\ell+1) I^{2}(\lambda, \ell) f(z)=(\ell+1-\lambda) I^{1}(\lambda, \ell) f(z)+\lambda z\left(I^{1}(\lambda, \ell) f(z)\right)^{\prime} \tag{1.4}
\end{gather*}
$$

$\lambda>0$, and

$$
\begin{equation*}
I^{m_{1}}(\lambda, \ell)\left(I^{m_{2}}(\lambda, \ell) f(z)\right)=I^{m_{2}}(\lambda, \ell)\left(I^{m_{1}}(\lambda, \ell) f(z)\right) \tag{1.5}
\end{equation*}
$$

for all integers m_{1} and m_{2}.
We note that:
(i) $I^{m}(1, \ell)=I_{\ell}^{m}$ (see Cho and Srivastava [4] and Cho and Kim [5]);
(ii) $I^{m}(\lambda, 0)=D_{\lambda}^{m}\left(m \in N_{0} ; \lambda \geq 0\right)$ (see Al-Oboudi [1]);
(iii) $I^{m}(1,0)=D^{m}\left(m \in N_{0}\right)$ (see Sălăgean [17]);
(iv) $I^{m}(1,1)=I_{m}$ (see Uralegaddi and Somanatha [19]).

Let S be the class of all functions φ which are analytic and univalent in U and for which $\varphi(U)$ is convex and $\varphi(0)=1$ and $\operatorname{Re}\{\varphi(z)\}>0(z \in U)$.

Making use of the principle of subordination between analytic functions, we introduce the subclasses $S^{*}(\eta ; \varphi), K(\eta ; \varphi)$ and $C(\eta, \delta ; \varphi, \psi)$ of the class A for $0 \leq \eta, \delta<1$ and $\varphi, \psi \in S$ (cf., e.g., [6], [8] and [12]), which are defined as follows:

$$
\begin{aligned}
S^{*}(\eta ; \varphi) & =\left\{f \in A: \frac{1}{1-\eta}\left(\frac{z f^{\prime}(z)}{f(z)}-\eta\right) \prec \varphi(z), z \in U\right\} \\
K(\eta ; \varphi) & =\left\{f \in A: \frac{1}{1-\eta}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\eta\right) \prec \varphi(z), z \in U\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& C(\eta, \delta ; \varphi, \psi)=\left\{f \in A: \exists g \in S^{*}(\eta, \varphi)\right. \text { s.t. } \\
&\left.\frac{1}{1-\delta}\left(\frac{z f^{\prime}(z)}{g(z)}-\delta\right) \prec \psi(z), z \in U\right\}
\end{aligned}
$$

We note that, for special choices for the functions φ and ψ in the above definitions we obtain the well-known subclasses of A. For examples, we have
(i) $S^{*}\left(\eta ; \frac{1+z}{1-z}\right)=S^{*}(\eta) \quad(0 \leq \eta<1)$,
(ii) $K\left(\eta ; \frac{1+z}{1-z}\right)=K(\eta) \quad(0 \leq \eta<1)$
and
(iii) $C\left(0,0 ; \frac{1+z}{1-z} ; \frac{1+z}{1-z}\right)=C$.

Setting

$$
f_{\lambda, \ell}^{m}(z)=z+\sum_{k=2}^{\infty}\left[\frac{\ell+1+\lambda(k-1)}{\ell+1}\right]^{m} z^{k} \quad\left(m \in N_{0}, \lambda \geq 0, \ell \geq 0\right)
$$

we define a new function $f_{\lambda, \ell, \mu}^{m}(z)$ in terms of the Hadamard product (or convolution) by:

$$
\begin{equation*}
f_{\lambda, \ell}^{m}(z) * f_{\lambda, \ell, \mu}^{m}(z)=\frac{z}{(1-z)^{\mu}} \quad(\mu>0 ; z \in U) . \tag{1.6}
\end{equation*}
$$

Then, motivated essentially by the Choi-Saigo-Srivastava operator [6] (see also [10], [11], [14], and [15]), we now introduce the operators $f_{\lambda, \ell, \mu}^{m}: A \rightarrow A$, which are defined here by

$$
\begin{equation*}
I_{\lambda, \ell, \mu}^{m} f(z)=f_{\lambda, \ell, \mu}^{m} * f(z) \tag{1.7}
\end{equation*}
$$

($f \in A ; m \in N_{0} ; \lambda \geq 0 ; \ell \geq 0 ; \mu>0$). For a function $f(z) \in A$, given by (1.1), it is easily seen from (1.7) that

$$
\begin{equation*}
I_{\lambda, \ell, \mu}^{m} f(z)=z+\sum_{k=2}^{\infty}\left[\frac{\ell+1}{\ell+1+\lambda(k-1)}\right]^{m} \frac{(\mu)_{k-1}}{(1)_{k-1}} a_{k} z^{k} \tag{1.8}
\end{equation*}
$$

$\left(m \in N_{0} ; \lambda \geq 0 ; \ell \geq 0 ; z \in U\right)$.
We note that:
(i) $I_{1,0,2}^{1} f(z)=f(z)$ and $I_{1,0,2}^{0} f(z)=z f^{\prime}(z)$,
and
(ii) $I_{1, \ell, \mu}^{s} f(z)=I_{\ell, \mu}^{s} f(z)(s \in R$; see Cho and Kim [5]).

In view of (1.8), we obtain the following relations:

$$
\begin{equation*}
\lambda z\left(I_{\lambda, \ell, \mu}^{m+1} f(z)\right)^{\prime}=(\ell+1) I_{\lambda, \ell, \mu}^{m} f(z)-[\lambda-(\ell+1)] I_{\lambda, \ell, \mu}^{m+1} f(z) \tag{1.9}
\end{equation*}
$$

($f \in A ; m \in N_{0} ; \lambda>0 ; \ell \geq 0 ; \mu>0$) and

$$
\begin{equation*}
z\left(I_{\lambda, \ell, \mu}^{m} f(z)\right)^{\prime}=\mu I_{\lambda, \ell, \mu+1}^{m} f(z)-(\mu-1) I_{\lambda, \ell, \mu}^{m} f(z) \tag{1.10}
\end{equation*}
$$

($f \in A ; m \in N_{0} ; \lambda \geq 0 ; \ell \geq 0 ; \mu>0$). Next, by using the operator $I_{\lambda, \ell, \mu}^{m}$, we introduce the following classes of analytic functions for $\varphi, \psi \in S, m \in N_{0}$, $\lambda \geq 0, \ell \geq 0, \mu>0$ and $0 \leq \eta, \delta<1$:

$$
\begin{align*}
S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi) & =\left\{f \in A: I_{\lambda, \ell, \mu}^{m} f(z) \in S^{*}(\eta ; \varphi)\right\}, \tag{1.11}\\
K_{\lambda, \ell, \mu}^{m}(\eta ; \varphi) & =\left\{f \in A: I_{\lambda, \ell, \mu}^{m} f(z) \in K(\eta ; \varphi)\right\} \tag{1.12}
\end{align*}
$$

and

$$
\begin{equation*}
C_{\lambda, \ell, \mu}^{m}(\eta, \delta ; \varphi, \psi)=\left\{f \in A: I_{\lambda, \ell, \mu}^{m} f(z) \in C(\eta, \delta ; \varphi, \psi)\right\} \tag{1.13}
\end{equation*}
$$

We also have

$$
\begin{equation*}
f(z) \in K_{\lambda, \ell, \mu}^{m}(\eta ; \varphi) \Leftrightarrow z f^{\prime}(z) \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi) . \tag{1.14}
\end{equation*}
$$

In particular, we set

$$
S_{\lambda, \ell, \mu}^{m}\left(\eta ;\left(\frac{1+A z}{1+B z}\right)^{\alpha}\right)=S_{\lambda, \ell, \mu}^{m}(\eta ; A, B, \alpha)
$$

$(0<\alpha \leq 1 ;-1 \leq B<A \leq 1)$ and

$$
K_{\lambda, \ell, \mu}^{m}\left(\eta ;\left(\frac{1+A z}{1+B z}\right)^{\alpha}\right)=K_{\lambda, \ell, \mu}^{m}(\eta ; A, B, \alpha)
$$

$(0<\alpha \leq 1 ;-1 \leq B<A \leq 1)$.
In this paper, we investigate several inclusion properties of the classes $S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi), K_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)$ and $C_{\lambda, \ell, \mu}^{m}(\eta, \delta ; \varphi, \psi)$ associated with the operator $I_{\lambda, \ell, \mu}^{m}$. Some applications involving these and other classes of integral operators are also considered.
2. Inclusion properties involving the operator $I_{\lambda, \ell, \mu}^{m}$. The following lemmas will be required in our investigation.

Lemma 1 ([7]). Let φ be convex, univalent in U with $\varphi(0)=1$ and $\operatorname{Re}\{\beta \varphi(z)+\nu\}>0(\beta, \nu \in C)$. If p is analytic in U with $p(0)=1$, then

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\nu} \prec \varphi(z) \quad(z \in U)
$$

implies that

$$
p(z) \prec \varphi(z) \quad(z \in U) .
$$

Lemma 2 ([13]). Let φ be convex, univalent in U and w be analytic in U with $\operatorname{Re}\{w(z)\} \geq 0$. If $p(z)$ is analytic in U and $p(0)=\varphi(0)$, then

$$
p(z)+w(z) z p^{\prime}(z) \prec \varphi(z) \quad(z \in U)
$$

implies that

$$
p(z) \prec \varphi(z) \quad(z \in U) .
$$

At first, with the help of Lemma 1, we prove the following theorem.

Theorem 1. Let $m \in N_{0}, \lambda>0, \ell \geq 0, \ell+1>\lambda$ and $\mu \geq 1$. Then

$$
S_{\lambda, \ell, \mu+1}^{m}(\eta ; \varphi) \subset S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi) \subset S_{\lambda, \ell, \mu}^{m+1}(\eta ; \varphi)
$$

$(0 \leq \eta<1 ; \phi \in S)$.
Proof. First of all, we will show that

$$
S_{\lambda, \ell, \mu+1}^{m}(\eta ; \varphi) \subset S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)
$$

Let $f \in S_{\lambda, \ell, \mu+1}^{m}(\eta ; \varphi)$ and put

$$
\begin{equation*}
p(z)=\frac{1}{1-\eta}\left(\frac{z\left(I_{\lambda, \ell, \mu}^{m} f(z)\right)^{\prime}}{I_{\lambda, \ell, \mu}^{m} f(z)}-\eta\right) \tag{2.1}
\end{equation*}
$$

where $p(z)$ is analytic in U with $p(0)=1$. Using (1.10) and (2.1), we obtain

$$
\begin{equation*}
\mu \frac{I_{\lambda, \ell, \mu+1}^{m} f(z)}{I_{\lambda, \ell, \mu}^{m} f(z)}=(1-\eta) p(z)+\eta+(\mu-1) \tag{2.2}
\end{equation*}
$$

Differentiating (2.2) logarithmically with respect to z, we obtain

$$
\begin{equation*}
\frac{1}{1-\eta}\left(\frac{z\left(I_{\lambda, \ell, \mu+1}^{m} f(z)\right)^{\prime}}{I_{\lambda, \ell, \mu+1}^{m} f(z)}-\eta\right)=p(z)+\frac{z p^{\prime}(z)}{(1-\eta) p(z)+\eta+(\mu-1)} \tag{2.3}
\end{equation*}
$$

$(z \in U)$. Applying Lemma 1 to (2.3), it follows that $p \prec \varphi$, that is $f \in$ $S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)$.

To prove the second part, let $f \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)$ and put

$$
h(z)=\frac{1}{1-\eta}\left(\frac{z\left(I_{\lambda, \ell, \mu}^{m+1} f(z)\right)^{\prime}}{I_{\lambda, \ell, \mu}^{m+1} f(z)}-\eta\right)
$$

where h is analytic in U with $h(0)=1$. Then, by using the arguments similar to those detailed above with (1.9), it follows that $h \prec \varphi$. This completes the proof of Theorem 1.
Theorem 2. Let $m \in N_{0}, \lambda>0, \ell \geq 0, \ell+1>\lambda$ and $\mu \geq 1$. Then

$$
K_{\lambda, \ell, \mu+1}^{m}(\eta ; \varphi) \subset K_{\lambda, \ell, \mu}^{m}(\eta ; \varphi) \subset K_{\lambda, \ell, \mu}^{m+1}(\eta ; \varphi)
$$

$(0 \leq \eta<1 ; \phi \in S)$.
Proof. Applying (1.11) and Theorem 1, we observe that

$$
\begin{aligned}
f \in K_{\lambda, \ell, \mu+1}^{m}(\eta ; \varphi) & \Leftrightarrow I_{\lambda, \ell, \mu+1}^{m} f(z) \in K(\eta ; \varphi) \Leftrightarrow z\left(I_{\lambda, \ell, \mu+1}^{m} f(z)\right)^{\prime} \in S^{*}(\eta ; \varphi) \\
& \Leftrightarrow I_{\lambda, \ell, \mu+1}^{m}\left(z f^{\prime}(z)\right) \in S^{*}(\eta ; \varphi) \\
& \Leftrightarrow z f^{\prime}(z) \in S_{\lambda, \ell, \mu+1}^{m}(\eta ; \varphi) \\
& \Rightarrow z f^{\prime}(z) \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi) \\
& \Leftrightarrow I_{\lambda, \ell, \mu}^{m}\left(z f^{\prime}(z)\right) \in S^{m}(\eta ; \varphi)
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow z\left(I_{\lambda, \ell, \mu}^{m}(z f(z))^{\prime} \in S^{m}(\eta ; \varphi)\right. \\
& \Leftrightarrow I_{\lambda, \ell, \mu}^{m} f(z) \in K(\eta ; \varphi) \\
& \Leftrightarrow f(z) \in K_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)
\end{aligned}
$$

and

$$
\begin{aligned}
f(z) \in K_{\lambda, \ell, \mu}^{m}(\eta ; \varphi) & \Leftrightarrow z f^{\prime}(z) \in S^{*}(\eta ; \varphi) \\
& \Rightarrow z f^{\prime}(z) \in S_{\lambda, \ell, \mu}^{m+1}(\eta ; \varphi) \\
& \Leftrightarrow z\left(I_{\lambda, \ell, \mu}^{m+1} f(z)\right)^{\prime} \in S^{*}(\eta ; \varphi) \\
& \Leftrightarrow I_{\lambda, \ell, \mu}^{m+1} f(z) \in K(\eta ; \varphi) \\
& \Leftrightarrow f(z) \in K_{\lambda, \ell, \mu}^{m+1}(\eta ; \varphi),
\end{aligned}
$$

which evidently proves Theorem 2 .
Taking

$$
\varphi(z)=\left(\frac{1+A z}{1+B z}\right)^{\alpha}
$$

$(-1 \leq B<A \leq 1 ; 0<\alpha \leq 1 ; z \in U)$ in Theorem 1 and Theorem 2, we obtain the following corollary.
Corollary 1. Let $m \in N_{0}, \lambda>0, \ell \geq 0, \ell+1>\lambda$ and $\mu \geq 1$. Then

$$
S_{\lambda, \ell, \mu+1}^{m}(\eta ; A, B ; \alpha) \subset S_{\lambda, \ell, \mu}^{m}(\eta ; A, B ; \alpha) \subset S_{\lambda, \ell, \mu}^{m+1}(\eta ; A, B ; \alpha)
$$

($0 \leq \mu<1 ;-1 \leq B<A \leq 1 ; 0<\alpha \leq 1$), and

$$
K_{\lambda, \ell, \mu+1}^{m}(\eta ; A, B ; \alpha) \subset K_{\lambda, \ell, \mu}^{m}(\eta ; A, B ; \alpha) \subset K_{\lambda, \ell, \mu}^{m+1}(\eta ; A, B ; \alpha)
$$

($0 \leq \mu<1 ;-1 \leq B<A \leq 1 ; 0<\alpha \leq 1$).
By using Lemma 2, we obtain the following inclusion relation of the class $C_{\lambda, \ell, \mu}^{m}(\eta, \delta ; \phi, \psi)$.
Theorem 3. Let $m \in N_{0}, \lambda>0, \ell \geq 0, \ell+1>\lambda$ and $\mu \geq 1$. Then

$$
C_{\lambda, \ell, \mu+1}^{m}(\eta, \delta ; \varphi, \psi) \subset C_{\lambda, \ell, \mu}^{m}(\eta, \delta ; \varphi, \psi) \subset C_{\lambda, \ell, \mu}^{m+1}(\eta, \delta ; \varphi, \psi)
$$

$(0 \leq \eta ; \delta<1 ; \varphi, \psi \in S)$.
Proof. We begin by proving that

$$
C_{\lambda, \ell, \mu+1}^{m}(\eta, \delta ; \varphi, \psi) \subset C_{\lambda, \ell, \mu}^{m}(\eta, \delta ; \varphi, \psi) .
$$

Let $f \in C_{\lambda, \ell, \mu+1}^{m}(\eta, \delta ; \varphi, \psi)$. Then, in view of the definition of the class $C_{\lambda, \ell, \mu+1}^{m}(\eta, \delta ; \varphi, \psi)$, there exists a function $g \in S_{\lambda, \ell, \mu+1}^{m}(\eta ; \varphi)$ such that

$$
\frac{1}{1-\delta}\left(\frac{z\left(I_{\lambda, \ell, \mu+1}^{m} f(z)\right)^{\prime}}{I_{\lambda, \ell, \mu+1}^{m} g(z)}-\delta\right) \prec \psi(z) \quad(z \in U) .
$$

Now let

$$
p(z)=\frac{1}{1-\delta}\left(\frac{z\left(I_{\lambda, \ell, \mu}^{m} f(z)\right)^{\prime}}{I_{\lambda, \ell, \mu}^{m} g(z)}-\delta\right)
$$

where p is analytic in U with $p(0)=1$. Using the identity (1.10), we obtain

$$
\begin{equation*}
[(1-\delta) p(z)+\delta] I_{\lambda, \ell, \mu}^{m} g(z)+(\mu-1) I_{\lambda, \ell, \mu}^{m} f(z)=\mu I_{\lambda, \ell, \mu+1}^{m} f(z) \tag{2.4}
\end{equation*}
$$

Differentiating (2.4) with respect to z and multiplying by z, we have

$$
\begin{array}{r}
(1-\delta) z p^{\prime}(z) I_{\lambda, \ell, \mu}^{m} g(z)+[(1-\delta) p(z)+\delta] z\left(I_{\lambda, \ell, \mu}^{m} g(z)\right)^{\prime} \tag{2.5}\\
=\mu z\left(I_{\lambda, \ell, \mu+1}^{m} f(z)\right)^{\prime}-(\mu-1) z\left(I_{\lambda, \ell, \mu}^{m} f(z)\right)^{\prime}
\end{array}
$$

Since $g \in S_{\lambda, \ell, \mu+1}^{m}(\eta ; \varphi)$, by Theorem 1, we know that $g \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)$. Let

$$
q(z)=\frac{1}{1-\eta}\left(\frac{z\left(I_{\lambda, \ell, \mu}^{m} g(z)\right)^{\prime}}{I_{\lambda, \ell, \mu}^{m} g(z)}-\eta\right)
$$

Then, using the identity (1.10) once again, we obtain

$$
\begin{equation*}
\mu \frac{I_{\lambda, \ell, \mu+1}^{m} g(z)}{I_{\lambda, \ell, \mu}^{m} g(z)}=(1-\eta) q(z)+\eta+(\mu-1) \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6), we have

$$
\frac{1}{1-\delta}\left(\frac{z\left(I_{\lambda, \ell, \mu+1}^{m} f(z)\right)^{\prime}}{I_{\lambda, \ell, \mu+1}^{m} g(z)}-\delta\right)=p(z)+\frac{z p^{\prime}(z)}{(1-\eta) q(z)+\eta+(\mu-1)}
$$

Since $0 \leq \eta<1, \mu \geq 1$ and $q \prec \varphi$ in U,

$$
\operatorname{Re}\{(1-\eta) q(z)+\eta+\mu-1\}>0
$$

$(z \in U)$. Hence applying Lemma 2 , we can show that $p \prec \psi$, so that $f \in$ $C_{\lambda, \ell, \mu}^{m}(\eta ; \delta ; \varphi, \psi)$.

For the second part, by using the arguments similar to those detailed above with (1.9), we obtain

$$
C_{\lambda, \ell, \mu}^{m}(\eta, \delta ; \varphi, \psi) \subset C_{\lambda, \ell, \mu}^{m+1}(\eta, \delta ; \varphi, \psi)
$$

This completes the proof of Theorem 3.
3. Inclusion properties involving the integral operator $\boldsymbol{F}_{\boldsymbol{c}}$. In this section, we consider the generalized Libera integral operator F_{c} (see [16], [2] and [9]) defined by

$$
\begin{equation*}
F_{c}(f)=F_{c}(f)(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{3.1}
\end{equation*}
$$

$(c>-1 ; f \in A)$. We first prove the following theorem.
Theorem 4. Let $c, \lambda \geq 0, m \in N_{0}, \ell \geq 0$ and $\mu>0$. If $f \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)$ $(0 \leq \eta<1 ; \varphi \in S)$, then $F_{c}(f) \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)(0 \leq \eta<1 ; \varphi \in S)$.

Proof. Let $f \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)$ and put

$$
\begin{equation*}
p(z)=\frac{1}{1-\eta}\left(\frac{z\left(I_{\lambda, \ell, \mu}^{m} F_{c}(f)(z)\right)^{\prime}}{I_{\lambda, \ell, \mu}^{m} F_{c}(f)(z)}-\eta\right), \tag{3.2}
\end{equation*}
$$

where p is analytic in U with $p(0)=1$. From (3.1), we have

$$
\begin{equation*}
z\left(I_{\lambda, \ell, \mu}^{m} F_{c}(f)(z)\right)^{\prime}=(c+1) I_{\lambda, \ell, \mu}^{m} f(z)-c I_{\lambda, \ell, \mu}^{m} F_{c}(f)(z) . \tag{3.3}
\end{equation*}
$$

Then, by using (3.2) and (3.3), we have

$$
\begin{equation*}
(c+1) \frac{I_{\lambda, \ell, \mu}^{m} f(z)}{I_{\lambda, \ell, \mu}^{m} F_{c}(f)(z)}=(1-\eta) p(z)+\eta+c . \tag{3.4}
\end{equation*}
$$

Differentiating (3.4) logarithmically with respect to z and multiplying by z, we have

$$
p(z)+\frac{z p^{\prime}(z)}{(1-\eta) p(z)+\eta+c}=\frac{1}{1-\eta}\left(\frac{z\left(I_{\lambda, \ell, \mu}^{m} f(z)\right)^{\prime}}{I_{\lambda, \ell, \mu}^{m} f(z)}-\eta\right) \quad(z \in U) .
$$

Hence, by virtue of Lemma 1, we conclude that $p \prec \varphi(z \in U)$, which implies that $F_{c}(f) \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)$.

Next, we derive an inclusion property involving F_{c}, which is given by the following theorem.

Theorem 5. Let $c, \ell \geq 0, m \in N_{0}, \lambda \geq 0$ and $\mu>0$. If $f \in K_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)$ $(0 \leq \eta<1 ; \varphi \in S)$, then $F_{c}(f) \in K_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)(0 \leq \eta<1 ; \varphi \in S)$.
Proof. By applying Theorem 4, it follows that

$$
\begin{aligned}
f(z) \in K_{\lambda, \ell, \mu}^{m}(\eta ; \varphi) & \Leftrightarrow z f^{\prime}(z) \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi) \\
& \Rightarrow F_{c}\left(z f^{\prime}(z)\right) \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi) \\
& \Leftrightarrow z\left(F_{c}(f)(z)\right)^{\prime} \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi) \\
& \Leftrightarrow F_{c}(f)(z) \in K_{\lambda, \ell, \mu}^{m}(\eta ; \varphi),
\end{aligned}
$$

which proves Theorem 5.
From Theorem 4 and Theorem 5, we have the following corollary.
Corollary 2. Let $c, \ell \geq 0, m \in N_{0}, \lambda>0$ and $\mu>0$. If $f \in S_{\lambda, \ell, \mu}^{m}(\eta ; A, B ; \alpha)$ (or $\left.K_{\lambda, \ell, \mu}^{m}(\eta ; A, B ; \alpha)\right)(0 \leq \eta<1 ;-1 \leq B<A \leq 1 ; 0<\alpha \leq 1)$, then $F_{c}(f)$ belongs to the class $S_{\lambda, \ell, \mu}^{m}(\eta ; A, B ; \alpha)$ (or $\left.K_{\lambda, \ell, \mu}^{m}(\eta ; A, B ; \alpha)\right)(0 \leq \eta<1$; $-1 \leq B<A \leq 1 ; 0<\alpha \leq 1$).

Finally, we prove the following theorem.
Theorem 6. Let $c, \ell \geq 0, m \in N_{0}, \lambda>0$ and $\mu>0$. If $f \in C_{\lambda, \ell, \mu}^{m}(\eta ; \delta, \varphi ; \psi)$ $(0 \leq \eta ; \delta<1 ; \varphi, \psi \in S)$, then $F_{c}(f) \in C_{\lambda, \ell, \mu}^{m}(\eta ; \delta, \varphi ; \psi)(0 \leq \eta ; \delta<1$; $\varphi, \psi \in S)$.

Proof. Let $f \in C_{\lambda, \ell, \mu}^{m}(\eta ; \delta, \varphi ; \psi)$. Then, in view of the definition of the class $C_{\lambda, \ell, \mu}^{m}(\eta ; \delta, \varphi ; \psi)$, there exists a function $g \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)$ such that

$$
\frac{1}{1-\delta}\left(\frac{z\left(I_{\lambda, \ell, \mu}^{m} f(z)\right)^{\prime}}{I_{\lambda, \ell, \mu}^{m} g(z)}-\delta\right) \prec \psi(z) \quad(z \in U) .
$$

Thus, we put

$$
p(z)=\frac{1}{1-\delta}\left(\frac{z\left(I_{\lambda, \ell, \mu}^{m} F_{c}(f)(z)\right)^{\prime}}{I_{\lambda, \ell, \mu}^{m} F_{c}(g)(z)}-\delta\right),
$$

where p is analytic in U with $p(0)=1$. Since $g \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)$, we see from Theorem 4 that $F_{c}(g) \in S_{\lambda, \ell, \mu}^{m}(\eta ; \varphi)$. Using (3.3), we have

$$
[(1-\delta) p(z)+\delta] I_{\lambda, \ell, \mu}^{m} F_{c}(g)(z)+c I_{\lambda, \ell, \mu}^{m} F_{c}(f)(z)=(c+1) I_{\lambda, \ell, \mu}^{m} f(z) .
$$

Then, by a simple calculations, we get
$(c+1) \frac{z\left(I_{\lambda, \ell, \mu}^{m} f(z)\right)^{\prime}}{I_{\lambda, \ell, \mu}^{m} F_{c}(g)(z)}=[(1-\delta) p(z)+\delta][(1-\eta) q(z)+\eta+c]+(1-\delta) z p^{\prime}(z)$,
where

$$
q(z)=\frac{1}{1-\eta}\left(\frac{z\left(I_{\lambda, \ell, \mu}^{m} F_{c}(g)(z)\right)^{\prime}}{I_{\lambda, \ell, \mu}^{m} F_{c}(g)(z)}-\eta\right) .
$$

Hence, we have

$$
\frac{1}{1-\delta}\left(\frac{z\left(I_{\lambda, \ell, \mu}^{m} f(z)\right)^{\prime}}{I_{\lambda, \ell, \mu}^{m} g(z)}-\delta\right)=p(z)+\frac{z p^{\prime}(z)}{(1-\eta) q(z)+\eta+c} .
$$

The remaining part of the proof of Theorem 6 is similar to that of Theorem 3 and so we omit it.

Acknowledgments. The authors thank the referees for their valuable suggestions to improve the paper.

References

[1] Al-Oboudi, F. M., On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429-1436.
[2] Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 35 (1969), 429-446.
[3] Cătaş, A., On certain class of p-valent functions defined by new multiplier transformations, Proceedings Book of the International Symposium on Geometric Function Theory and Applications, August 20-24, 2007, TC Istanbul Kultur University, Turkey, 241-251.
[4] Cho, N. E., Srivastava, H. M., Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37 (1-2) (2003), 39-49.
[5] Cho, N. E., Kim, T. H., Multiplier transformations and strongly close-to-convex functions, Bull. Korean. Math. Soc. 40 (3) (2003), 399-410.
[6] Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.
[7] Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a BriotBouquet differential subordination, General Inequalities, Vol. 3, Birkhäuser-Verlag, Basel, 1983, 339-348.
[8] Kim, Y. C., Choi, J. H. and Sugawa, T., Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 95-93.
[9] Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1956), 755-758.
[10] Liu, J. L., The Noor, integral and strongly starlike functions, J. Math. Anal. Appl. 261 (2001), 441-447.
[11] Liu, J. L., Noor, K. I., Some properties of Noor integral operator, J. Nat. Geom. 21 (2002), 81-90.
[12] Ma, W. C., Minda, D., An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 89-97.
[13] Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J. 28, no. 2 (1981), 157-171.
[14] Noor, K. I., On new class of integral operator, J. Nat. Geom. 16 (1999), 71-80.
[15] Noor, K. I., Noor, M. A., On integral operator, J. Math. Anal. Appl. 238 (1999), 341-352.
[16] Owa, S., Srivastava, H. M., Some applications of the generalized Libera integral operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 125-128.
[17] Sălăgean, G. Ş., Subclasses of univalent functions, Complex analysis - fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Springer-Verlag, Berlin, 1983, 362-372.
[18] Srivastava, H. M., Owa, S. (Editors), Current Topics in Analytic Theory, World Sci. Publ., River Edge, NJ, 1992.
[19] Uralegaddi, B. A., Somanatha, C., Certain classes of univalent functions, Current Topics in Analytic Function Theory, (Edited by H. M. Srivastava and S. Owa), World Sci. Publ., River Edge, NJ, 1992, 371-374.

M. K. Aouf

Math. Dept., Fac. of Sci. Mansoura University Mansoura 35516
Egypt
e-mail: mkaouf127@yahoo.com
R. M. El-Ashwah

Math. Dept., Fac. of Sci.
Mansoura University
Mansoura 35516
Egypt
e-mail: r_elashwah@yahoo.com

Received November 1, 2008

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Subordination, analytic, multiplier transformation, Libera integral operator.

