doi: 10.2478/v10062-009-0003-0

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXIII, 2009	SECTIO A	29 - 38

MOHAMED K. AOUF and RABHA M. EL-ASHWAH

Inclusion properties of certain subclass of analytic functions defined by multiplier transformations

ABSTRACT. Let A denote the class of analytic functions with normalization f(0) = f'(0) - 1 = 0 in the open unit disk $U = \{z : |z| < 1\}$. Set

$$f_{\lambda,\ell}^{m}(z) = z + \sum_{k=2}^{\infty} \left[\frac{\ell + 1 + \lambda(k-1)}{\ell + 1} \right]^{m} z^{k} \quad (z \in U; \ m \in N_{0}; \ \lambda \ge 0; \ \ell \ge 0),$$

and define $f^m_{\lambda\ell,\mu}$ in terms of the Hadamard product

$$f^m_{\lambda,\ell}(z)*f^m_{\lambda,\ell,\mu}(z)=\frac{z}{(1-z)^{\mu}}\quad (z\in U;\mu>0).$$

In this paper, we introduce several new subclasses of analytic functions defined by means of the operator $I^m_{\lambda,\ell,\mu}f(z) = f^m_{\lambda,\ell,\mu}(z) * f(z)$ $(f \in A; m \in N_0; \lambda \ge 0; \ell \ge 0; \mu > 0).$

Inclusion properties of these classes and the classes involving the generalized Libera integral operator are also considered.

1. Introduction. Let A denote the class of functions of the form:

(1.1)
$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

which are analytic in the open unit disk $U = \{z : |z| < 1\}$. If f and g are analytic in U, we say that f is subordinate to g, written $f(z) \prec g(z)$, if

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

 $Key\ words\ and\ phrases.$ Subordination, analytic, multiplier transformation, Libera integral operator.

there exists an analytic function w in U with w(0) = 0 and |w(z)| < 1 for $z \in U$ such that f(z) = g(w(z)). For $0 \le \eta < 1$, we denote by $S^*(\eta)$, $K(\eta)$ and C the subclasses of A consisting of all analytic functions which are, respectively, starlike of order η , convex of order η and close-to-convex in U (see, e.g. Srivastava and Owa [18]).

For $m \in N_0 = N \cup \{0\}$, where $N = \{1, 2, ...\}, \lambda \ge 0$ and $\ell \ge 0$, Cătaş [3] defined the multiplier transformations $I^m(\lambda, \ell)$ on A by the following infinite series

(1.2)
$$I^{m}(\lambda, \ell)f(z) = z + \sum_{k=2}^{\infty} \left[\frac{\ell + 1 + \lambda(k-1)}{\ell + 1}\right]^{m} a_{k} z^{k}.$$

It follows from (1.2) that

(1.3)
$$I^0(\lambda, \ell) = f(z),$$

(1.4)
$$(\ell+1)I^{2}(\lambda,\ell)f(z) = (\ell+1-\lambda)I^{1}(\lambda,\ell)f(z) + \lambda z(I^{1}(\lambda,\ell)f(z))',$$

 $\lambda > 0$, and

(1.5)
$$I^{m_1}(\lambda,\ell)(I^{m_2}(\lambda,\ell)f(z)) = I^{m_2}(\lambda,\ell)(I^{m_1}(\lambda,\ell)f(z))$$

for all integers m_1 and m_2 .

We note that:

- (i) $I^m(1, \ell) = I^m_{\ell}$ (see Cho and Srivastava [4] and Cho and Kim [5]);
- (ii) $I^m(\lambda, 0) = D^{tm}_{\lambda} (m \in N_0; \lambda \ge 0)$ (see Al-Oboudi [1]);
- (iii) $I^{m}(1,0) = D^{\widehat{m}} \ (m \in N_{0})$ (see Sălăgean [17]);
- (iv) $I^m(1,1) = I_m$ (see Uralegaddi and Somanatha [19]).

Let S be the class of all functions φ which are analytic and univalent in U and for which $\varphi(U)$ is convex and $\varphi(0) = 1$ and $\operatorname{Re}\{\varphi(z)\} > 0$ $(z \in U)$.

Making use of the principle of subordination between analytic functions, we introduce the subclasses $S^*(\eta; \varphi)$, $K(\eta; \varphi)$ and $C(\eta, \delta; \varphi, \psi)$ of the class A for $0 \leq \eta, \delta < 1$ and $\varphi, \psi \in S$ (cf., e.g., [6], [8] and [12]), which are defined as follows:

$$S^*(\eta;\varphi) = \left\{ f \in A : \frac{1}{1-\eta} \left(\frac{zf'(z)}{f(z)} - \eta \right) \prec \varphi(z), \ z \in U \right\},$$
$$K(\eta;\varphi) = \left\{ f \in A : \frac{1}{1-\eta} \left(1 + \frac{zf''(z)}{f'(z)} - \eta \right) \prec \varphi(z), \ z \in U \right\},$$

and

$$C(\eta, \delta; \varphi, \psi) = \left\{ f \in A : \exists g \in S^*(\eta, \varphi) \text{ s.t.} \\ \frac{1}{1 - \delta} \left(\frac{zf'(z)}{g(z)} - \delta \right) \prec \psi(z), \ z \in U \right\}.$$

We note that, for special choices for the functions φ and ψ in the above definitions we obtain the well-known subclasses of A. For examples, we have

(i)
$$S^*\left(\eta; \frac{1+z}{1-z}\right) = S^*(\eta) \quad (0 \le \eta < 1),$$

(ii) $K\left(\eta; \frac{1+z}{1-z}\right) = K(\eta) \quad (0 \le \eta < 1)$

and

(iii)
$$C\left(0,0;\frac{1+z}{1-z};\frac{1+z}{1-z}\right) = C.$$

Setting

$$f_{\lambda,\ell}^m(z) = z + \sum_{k=2}^{\infty} \left[\frac{\ell + 1 + \lambda(k-1)}{\ell + 1} \right]^m z^k \quad (m \in N_0, \, \lambda \ge 0, \, \ell \ge 0),$$

we define a new function $f^m_{\lambda,\ell,\mu}(z)$ in terms of the Hadamard product (or convolution) by:

(1.6)
$$f_{\lambda,\ell}^m(z) * f_{\lambda,\ell,\mu}^m(z) = \frac{z}{(1-z)^{\mu}} \quad (\mu > 0; \ z \in U).$$

Then, motivated essentially by the Choi–Saigo–Srivastava operator [6] (see also [10], [11], [14], and [15]), we now introduce the operators $f_{\lambda,\ell,\mu}^m : A \to A$, which are defined here by

(1.7)
$$I^m_{\lambda,\ell,\mu}f(z) = f^m_{\lambda,\ell,\mu} * f(z)$$

 $(f \in A; m \in N_0; \lambda \ge 0; \ell \ge 0; \mu > 0)$. For a function $f(z) \in A$, given by (1.1), it is easily seen from (1.7) that

(1.8)
$$I^{m}_{\lambda,\ell,\mu}f(z) = z + \sum_{k=2}^{\infty} \left[\frac{\ell+1}{\ell+1+\lambda(k-1)}\right]^{m} \frac{(\mu)_{k-1}}{(1)_{k-1}} a_{k} z^{k}$$

 $(m \in N_0; \lambda \ge 0; \ell \ge 0; z \in U).$ We note that:

(i)
$$I_{1,0,2}^1f(z) = f(z)$$
 and $I_{1,0,2}^0f(z) = zf'(z)$,

and

(ii)
$$I_{1,\ell,\mu}^s f(z) = I_{\ell,\mu}^s f(z)$$
 ($s \in R$; see Cho and Kim [5]).

In view of (1.8), we obtain the following relations:

(1.9)
$$\lambda z (I_{\lambda,\ell,\mu}^{m+1} f(z))' = (\ell+1) I_{\lambda,\ell,\mu}^m f(z) - [\lambda - (\ell+1)] I_{\lambda,\ell,\mu}^{m+1} f(z)$$

$$(f\in A;\,m\in N_0;\,\lambda>0;\,\ell\geq 0;\,\mu>0)$$
 and

(1.10)
$$z(I^m_{\lambda,\ell,\mu}f(z))' = \mu I^m_{\lambda,\ell,\mu+1}f(z) - (\mu-1)I^m_{\lambda,\ell,\mu}f(z)$$

 $(f \in A; m \in N_0; \lambda \ge 0; \ell \ge 0; \mu > 0)$. Next, by using the operator $I^m_{\lambda,\ell,\mu}$, we introduce the following classes of analytic functions for $\varphi, \psi \in S, m \in N_0$, $\lambda \ge 0, \ell \ge 0, \mu > 0$ and $0 \le \eta, \delta < 1$:

(1.11)
$$S^m_{\lambda,\ell,\mu}(\eta;\varphi) = \left\{ f \in A : I^m_{\lambda,\ell,\mu} f(z) \in S^*(\eta;\varphi) \right\},$$

(1.12)
$$K^m_{\lambda,\ell,\mu}(\eta;\varphi) = \left\{ f \in A : I^m_{\lambda,\ell,\mu} f(z) \in K(\eta;\varphi) \right\}$$

and

(1.13)
$$C^m_{\lambda,\ell,\mu}(\eta,\delta;\varphi,\psi) = \left\{ f \in A : I^m_{\lambda,\ell,\mu}f(z) \in C(\eta,\delta;\varphi,\psi) \right\}.$$

We also have

(1.14)
$$f(z) \in K^m_{\lambda,\ell,\mu}(\eta;\varphi) \Leftrightarrow zf'(z) \in S^m_{\lambda,\ell,\mu}(\eta;\varphi).$$

In particular, we set

$$S^m_{\lambda,\ell,\mu}\left(\eta; \left(\frac{1+Az}{1+Bz}\right)^{\alpha}\right) = S^m_{\lambda,\ell,\mu}(\eta; A, B, \alpha)$$

 $(0 < \alpha \le 1; -1 \le B < A \le 1)$ and $\mu_{m} = \left(\begin{array}{c} 1 + Az \end{array} \right)^{\alpha_{N}}$

$$K_{\lambda,\ell,\mu}^{m}\left(\eta; \left(\frac{1+Az}{1+Bz}\right)\right) = K_{\lambda,\ell,\mu}^{m}(\eta; A, B, \alpha)$$

 $(0 < \alpha \le 1; -1 \le B < A \le 1).$

In this paper, we investigate several inclusion properties of the classes $S^m_{\lambda,\ell,\mu}(\eta;\varphi)$, $K^m_{\lambda,\ell,\mu}(\eta;\varphi)$ and $C^m_{\lambda,\ell,\mu}(\eta,\delta;\varphi,\psi)$ associated with the operator $I^m_{\lambda,\ell,\mu}$. Some applications involving these and other classes of integral operators are also considered.

2. Inclusion properties involving the operator $I^m_{\lambda,\ell,\mu}$. The following lemmas will be required in our investigation.

Lemma 1 ([7]). Let φ be convex, univalent in U with $\varphi(0) = 1$ and Re { $\beta\varphi(z) + \nu$ } > 0 ($\beta, \nu \in C$). If p is analytic in U with p(0) = 1, then

$$p(z) + \frac{zp'(z)}{\beta p(z) + \nu} \prec \varphi(z) \quad (z \in U)$$

implies that

$$p(z)\prec \varphi(z) \quad (z\in U).$$

Lemma 2 ([13]). Let φ be convex, univalent in U and w be analytic in U with $\operatorname{Re}\{w(z)\} \geq 0$. If p(z) is analytic in U and $p(0) = \varphi(0)$, then

$$p(z) + w(z)zp'(z) \prec \varphi(z) \quad (z \in U)$$

implies that

$$p(z) \prec \varphi(z) \quad (z \in U).$$

At first, with the help of Lemma 1, we prove the following theorem.

Theorem 1. Let $m \in N_0$, $\lambda > 0$, $\ell \ge 0$, $\ell + 1 > \lambda$ and $\mu \ge 1$. Then $S^m_{\lambda,\ell,\mu+1}(\eta;\varphi) \subset S^m_{\lambda,\ell,\mu}(\eta;\varphi) \subset S^{m+1}_{\lambda,\ell,\mu}(\eta;\varphi)$

 $(0 \le \eta < 1; \phi \in S).$

Proof. First of all, we will show that

$$S^m_{\lambda,\ell,\mu+1}(\eta;\varphi) \subset S^m_{\lambda,\ell,\mu}(\eta;\varphi).$$

Let $f \in S^m_{\lambda,\ell,\mu+1}(\eta;\varphi)$ and put

(2.1)
$$p(z) = \frac{1}{1 - \eta} \left(\frac{z(I^m_{\lambda,\ell,\mu} f(z))'}{I^m_{\lambda,\ell,\mu} f(z)} - \eta \right),$$

where p(z) is analytic in U with p(0) = 1. Using (1.10) and (2.1), we obtain

(2.2)
$$\mu \frac{I^m_{\lambda,\ell,\mu+1}f(z)}{I^m_{\lambda,\ell,\mu}f(z)} = (1-\eta)p(z) + \eta + (\mu-1).$$

Differentiating (2.2) logarithmically with respect to z, we obtain

(2.3)
$$\frac{1}{1-\eta} \left(\frac{z(I_{\lambda,\ell,\mu+1}^m f(z))'}{I_{\lambda,\ell,\mu+1}^m f(z)} - \eta \right) = p(z) + \frac{zp'(z)}{(1-\eta)p(z) + \eta + (\mu-1)}$$

 $(z \in U)$. Applying Lemma 1 to (2.3), it follows that $p \prec \varphi$, that is $f \in S^m_{\lambda,\ell,\mu}(\eta;\varphi)$.

To prove the second part, let $f \in S^m_{\lambda,\ell,\mu}(\eta;\varphi)$ and put

$$h(z) = \frac{1}{1 - \eta} \left(\frac{z(I_{\lambda,\ell,\mu}^{m+1} f(z))'}{I_{\lambda,\ell,\mu}^{m+1} f(z)} - \eta \right),$$

where h is analytic in U with h(0) = 1. Then, by using the arguments similar to those detailed above with (1.9), it follows that $h \prec \varphi$. This completes the proof of Theorem 1.

Theorem 2. Let $m \in N_0$, $\lambda > 0$, $\ell \ge 0$, $\ell + 1 > \lambda$ and $\mu \ge 1$. Then

$$K^m_{\lambda,\ell,\mu+1}(\eta;\varphi) \subset K^m_{\lambda,\ell,\mu}(\eta;\varphi) \subset K^{m+1}_{\lambda,\ell,\mu}(\eta;\varphi)$$

 $(0 \le \eta < 1; \phi \in S).$

Proof. Applying (1.11) and Theorem 1, we observe that

$$\begin{split} f \in K^m_{\lambda,\ell,\mu+1}(\eta;\varphi) &\Leftrightarrow I^m_{\lambda,\ell,\mu+1}f(z) \in K(\eta;\varphi) \Leftrightarrow z(I^m_{\lambda,\ell,\mu+1}f(z))' \in S^*(\eta;\varphi) \\ &\Leftrightarrow I^m_{\lambda,\ell,\mu+1}(zf'(z)) \in S^*(\eta;\varphi) \\ &\Leftrightarrow zf'(z) \in S^m_{\lambda,\ell,\mu+1}(\eta;\varphi) \\ &\Rightarrow zf'(z) \in S^m_{\lambda,\ell,\mu}(\eta;\varphi) \\ &\Leftrightarrow I^m_{\lambda,\ell,\mu}(zf'(z)) \in S^m(\eta;\varphi) \end{split}$$

$$\Leftrightarrow z(I^m_{\lambda,\ell,\mu}(zf(z))' \in S^m(\eta;\varphi) \Leftrightarrow I^m_{\lambda,\ell,\mu}f(z) \in K(\eta;\varphi) \Leftrightarrow f(z) \in K^m_{\lambda,\ell,\mu}(\eta;\varphi)$$

and

$$\begin{split} f(z) \in K^m_{\lambda,\ell,\mu}(\eta;\varphi) &\Leftrightarrow zf'(z) \in S^*(\eta;\varphi) \\ &\Rightarrow zf'(z) \in S^{m+1}_{\lambda,\ell,\mu}(\eta;\varphi) \\ &\Leftrightarrow z(I^{m+1}_{\lambda,\ell,\mu}f(z))' \in S^*(\eta;\varphi) \\ &\Leftrightarrow I^{m+1}_{\lambda,\ell,\mu}f(z) \in K(\eta;\varphi) \\ &\Leftrightarrow f(z) \in K^{m+1}_{\lambda,\ell,\mu}(\eta;\varphi), \end{split}$$

which evidently proves Theorem 2.

Taking

$$\varphi(z) = \left(\frac{1+Az}{1+Bz}\right)^{\alpha}$$

 $(-1 \leq B < A \leq 1; \ 0 < \alpha \leq 1; \ z \in U)$ in Theorem 1 and Theorem 2, we obtain the following corollary.

Corollary 1. Let $m \in N_0$, $\lambda > 0$, $\ell \ge 0$, $\ell + 1 > \lambda$ and $\mu \ge 1$. Then

$$S^m_{\lambda,\ell,\mu+1}(\eta;A,B;\alpha) \subset S^m_{\lambda,\ell,\mu}(\eta;A,B;\alpha) \subset S^{m+1}_{\lambda,\ell,\mu}(\eta;A,B;\alpha)$$

 $(0 \le \mu < 1; -1 \le B < A \le 1; 0 < \alpha \le 1), and$

$$K^m_{\lambda,\ell,\mu+1}(\eta;A,B;\alpha) \subset K^m_{\lambda,\ell,\mu}(\eta;A,B;\alpha) \subset K^{m+1}_{\lambda,\ell,\mu}(\eta;A,B;\alpha)$$

 $(0 \le \mu < 1; -1 \le B < A \le 1; 0 < \alpha \le 1).$

By using Lemma 2, we obtain the following inclusion relation of the class $C^m_{\lambda,\ell,\mu}(\eta,\delta;\phi,\psi)$.

Theorem 3. Let $m \in N_0$, $\lambda > 0$, $\ell \ge 0, \ell + 1 > \lambda$ and $\mu \ge 1$. Then

$$C^m_{\lambda,\ell,\mu+1}(\eta,\delta;\varphi,\psi) \subset C^m_{\lambda,\ell,\mu}(\eta,\delta;\varphi,\psi) \subset C^{m+1}_{\lambda,\ell,\mu}(\eta,\delta;\varphi,\psi)$$

 $(0 \le \eta; \delta < 1; \varphi, \psi \in S).$

Proof. We begin by proving that

$$C^m_{\lambda,\ell,\mu+1}(\eta,\delta;\varphi,\psi) \subset C^m_{\lambda,\ell,\mu}(\eta,\delta;\varphi,\psi).$$

Let $f \in C^m_{\lambda,\ell,\mu+1}(\eta,\delta;\varphi,\psi)$. Then, in view of the definition of the class $C^m_{\lambda,\ell,\mu+1}(\eta,\delta;\varphi,\psi)$, there exists a function $g \in S^m_{\lambda,\ell,\mu+1}(\eta;\varphi)$ such that

$$\frac{1}{1-\delta} \left(\frac{z(I^m_{\lambda,\ell,\mu+1}f(z))'}{I^m_{\lambda,\ell,\mu+1}g(z)} - \delta \right) \prec \psi(z) \quad (z \in U).$$

Now let

$$p(z) = \frac{1}{1-\delta} \left(\frac{z(I^m_{\lambda,\ell,\mu}f(z))'}{I^m_{\lambda,\ell,\mu}g(z)} - \delta \right),$$

where p is analytic in U with p(0) = 1. Using the identity (1.10), we obtain (2.4) $[(1-\delta)p(z)+\delta] I^m_{\lambda,\ell,\mu}g(z) + (\mu-1)I^m_{\lambda,\ell,\mu}f(z) = \mu I^m_{\lambda,\ell,\mu+1}f(z).$ Differentiating (2.4) with respect to z and multiplying by z, we have

(2.5)
$$(1-\delta)zp'(z)I^{m}_{\lambda,\ell,\mu}g(z) + [(1-\delta)p(z)+\delta]z(I^{m}_{\lambda,\ell,\mu}g(z))' \\ = \mu z(I^{m}_{\lambda,\ell,\mu+1}f(z))' - (\mu-1)z(I^{m}_{\lambda,\ell,\mu}f(z))'.$$

Since $g \in S^m_{\lambda,\ell,\mu+1}(\eta;\varphi)$, by Theorem 1, we know that $g \in S^m_{\lambda,\ell,\mu}(\eta;\varphi)$. Let

$$q(z) = \frac{1}{1-\eta} \left(\frac{z(I^m_{\lambda,\ell,\mu}g(z))'}{I^m_{\lambda,\ell,\mu}g(z)} - \eta \right).$$

Then, using the identity (1.10) once again, we obtain

(2.6)
$$\mu \frac{I^m_{\lambda,\ell,\mu+1}g(z)}{I^m_{\lambda,\ell,\mu}g(z)} = (1-\eta)q(z) + \eta + (\mu-1)$$

From (2.5) and (2.6), we have

$$\frac{1}{1-\delta} \left(\frac{z(I^m_{\lambda,\ell,\mu+1}f(z))'}{I^m_{\lambda,\ell,\mu+1}g(z)} - \delta \right) = p(z) + \frac{zp'(z)}{(1-\eta)q(z) + \eta + (\mu-1)}.$$

Since $0 \le \eta < 1$, $\mu \ge 1$ and $q \prec \varphi$ in U,

$$\operatorname{Re} \{ (1 - \eta)q(z) + \eta + \mu - 1 \} > 0$$

 $(z \in U)$. Hence applying Lemma 2, we can show that $p \prec \psi$, so that $f \in C^m_{\lambda,\ell,\mu}(\eta; \delta; \varphi, \psi)$.

For the second part, by using the arguments similar to those detailed above with (1.9), we obtain

$$C^m_{\lambda,\ell,\mu}(\eta,\delta;\varphi,\psi) \subset C^{m+1}_{\lambda,\ell,\mu}(\eta,\delta;\varphi,\psi).$$

This completes the proof of Theorem 3.

3. Inclusion properties involving the integral operator F_c . In this section, we consider the generalized Libera integral operator F_c (see [16], [2] and [9]) defined by

(3.1)
$$F_c(f) = F_c(f)(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt$$

 $(c > -1; f \in A)$. We first prove the following theorem.

Theorem 4. Let $c, \lambda \geq 0$, $m \in N_0$, $\ell \geq 0$ and $\mu > 0$. If $f \in S^m_{\lambda,\ell,\mu}(\eta;\varphi)$ $(0 \leq \eta < 1; \varphi \in S)$, then $F_c(f) \in S^m_{\lambda,\ell,\mu}(\eta;\varphi)$ $(0 \leq \eta < 1; \varphi \in S)$.

Proof. Let $f \in S^m_{\lambda,\ell,\mu}(\eta;\varphi)$ and put

(3.2)
$$p(z) = \frac{1}{1 - \eta} \left(\frac{z(I^m_{\lambda,\ell,\mu} F_c(f)(z))'}{I^m_{\lambda,\ell,\mu} F_c(f)(z)} - \eta \right),$$

where p is analytic in U with p(0) = 1. From (3.1), we have

(3.3)
$$z(I^m_{\lambda,\ell,\mu}F_c(f)(z))' = (c+1)I^m_{\lambda,\ell,\mu}f(z) - cI^m_{\lambda,\ell,\mu}F_c(f)(z).$$

Then, by using (3.2) and (3.3), we have

(3.4)
$$(c+1)\frac{I_{\lambda,\ell,\mu}^m f(z)}{I_{\lambda,\ell,\mu}^m F_c(f)(z)} = (1-\eta)p(z) + \eta + c.$$

Differentiating (3.4) logarithmically with respect to z and multiplying by z, we have

$$p(z) + \frac{zp'(z)}{(1-\eta)p(z) + \eta + c} = \frac{1}{1-\eta} \left(\frac{z(I^m_{\lambda,\ell,\mu}f(z))'}{I^m_{\lambda,\ell,\mu}f(z)} - \eta \right) \quad (z \in U).$$

Hence, by virtue of Lemma 1, we conclude that $p \prec \varphi$ $(z \in U)$, which implies that $F_c(f) \in S^m_{\lambda,\ell,\mu}(\eta;\varphi)$.

Next, we derive an inclusion property involving F_c , which is given by the following theorem.

Theorem 5. Let $c, \ell \geq 0$, $m \in N_0$, $\lambda \geq 0$ and $\mu > 0$. If $f \in K^m_{\lambda,\ell,\mu}(\eta;\varphi)$ $(0 \leq \eta < 1; \varphi \in S)$, then $F_c(f) \in K^m_{\lambda,\ell,\mu}(\eta;\varphi)$ $(0 \leq \eta < 1; \varphi \in S)$.

Proof. By applying Theorem 4, it follows that

$$\begin{split} f(z) \in K^{m}_{\lambda,\ell,\mu}(\eta;\varphi) \Leftrightarrow zf'(z) \in S^{m}_{\lambda,\ell,\mu}(\eta;\varphi) \\ \Rightarrow F_{c}(zf'(z)) \in S^{m}_{\lambda,\ell,\mu}(\eta;\varphi) \\ \Leftrightarrow z(F_{c}(f)(z))' \in S^{m}_{\lambda,\ell,\mu}(\eta;\varphi) \\ \Leftrightarrow F_{c}(f)(z) \in K^{m}_{\lambda,\ell,\mu}(\eta;\varphi), \end{split}$$

which proves Theorem 5.

From Theorem 4 and Theorem 5, we have the following corollary.

 $\begin{array}{l} \textbf{Corollary 2. Let } c,\ell \geq 0, \ m \in N_0, \ \lambda > 0 \ and \ \mu > 0. \ If \ f \in S^m_{\lambda,\ell,\mu}(\eta;A,B;\alpha) \\ (or \ K^m_{\lambda,\ell,\mu}(\eta;A,B;\alpha)) \ (0 \leq \eta < 1; \ -1 \leq B < A \leq 1; \ 0 < \alpha \leq 1), \ then \ F_c(f) \\ belongs \ to \ the \ class \ S^m_{\lambda,\ell,\mu}(\eta;A,B;\alpha) \ (or \ K^m_{\lambda,\ell,\mu}(\eta;A,B;\alpha)) \ (0 \leq \eta < 1; \\ -1 \leq B < A \leq 1; \ 0 < \alpha \leq 1). \end{array}$

Finally, we prove the following theorem.

Theorem 6. Let $c, \ell \geq 0, m \in N_0, \lambda > 0$ and $\mu > 0$. If $f \in C^m_{\lambda,\ell,\mu}(\eta; \delta, \varphi; \psi)$ $(0 \leq \eta; \delta < 1; \varphi, \psi \in S)$, then $F_c(f) \in C^m_{\lambda,\ell,\mu}(\eta; \delta, \varphi; \psi)$ $(0 \leq \eta; \delta < 1; \varphi, \psi \in S)$. **Proof.** Let $f \in C^m_{\lambda,\ell,\mu}(\eta; \delta, \varphi; \psi)$. Then, in view of the definition of the class $C^m_{\lambda,\ell,\mu}(\eta; \delta, \varphi; \psi)$, there exists a function $g \in S^m_{\lambda,\ell,\mu}(\eta; \varphi)$ such that

$$\frac{1}{1-\delta} \left(\frac{z(I^m_{\lambda,\ell,\mu}f(z))'}{I^m_{\lambda,\ell,\mu}g(z)} - \delta \right) \prec \psi(z) \quad (z \in U).$$

Thus, we put

$$p(z) = \frac{1}{1-\delta} \left(\frac{z(I^m_{\lambda,\ell,\mu}F_c(f)(z))'}{I^m_{\lambda,\ell,\mu}F_c(g)(z)} - \delta \right),$$

where p is analytic in U with p(0) = 1. Since $g \in S^m_{\lambda,\ell,\mu}(\eta;\varphi)$, we see from Theorem 4 that $F_c(g) \in S^m_{\lambda,\ell,\mu}(\eta;\varphi)$. Using (3.3), we have

$$[(1-\delta)p(z)+\delta] I^{m}_{\lambda,\ell,\mu}F_{c}(g)(z) + cI^{m}_{\lambda,\ell,\mu}F_{c}(f)(z) = (c+1)I^{m}_{\lambda,\ell,\mu}f(z).$$

Then, by a simple calculations, we get

$$(c+1)\frac{z(I^m_{\lambda,\ell,\mu}f(z))}{I^m_{\lambda,\ell,\mu}F_c(g)(z)} = \left[(1-\delta)p(z) + \delta\right]\left[(1-\eta)q(z) + \eta + c\right] + (1-\delta)zp'(z),$$

where

$$q(z) = \frac{1}{1-\eta} \left(\frac{z(I^m_{\lambda,\ell,\mu}F_c(g)(z))'}{I^m_{\lambda,\ell,\mu}F_c(g)(z)} - \eta \right).$$

Hence, we have

$$\frac{1}{1-\delta} \left(\frac{z(I^m_{\lambda,\ell,\mu}f(z))'}{I^m_{\lambda,\ell,\mu}g(z)} - \delta \right) = p(z) + \frac{zp'(z)}{(1-\eta)q(z) + \eta + c}$$

The remaining part of the proof of Theorem 6 is similar to that of Theorem 3 and so we omit it. $\hfill \Box$

Acknowledgments. The authors thank the referees for their valuable suggestions to improve the paper.

References

- Al-Oboudi, F. M., On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429–1436.
- [2] Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc. 35 (1969), 429–446.
- [3] Cătaş, A., On certain class of p-valent functions defined by new multiplier transformations, Proceedings Book of the International Symposium on Geometric Function Theory and Applications, August 20–24, 2007, TC Istanbul Kultur University, Turkey, 241–251.
- [4] Cho, N. E., Srivastava, H. M., Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37 (1-2) (2003), 39–49.
- [5] Cho, N. E., Kim, T. H., Multiplier transformations and strongly close-to-convex functions, Bull. Korean. Math. Soc. 40 (3) (2003), 399–410.

- [6] Choi, J. H., Saigo, M. and Srivastava, H. M., Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432–445.
- [7] Eenigenburg, P., Miller, S. S., Mocanu, P. T. and Reade, M. O., On a Briot-Bouquet differential subordination, General Inequalities, Vol. 3, Birkhäuser-Verlag, Basel, 1983, 339–348.
- [8] Kim, Y. C., Choi, J. H. and Sugawa, T., Coefficient bounds and convolution properties for certain classes of close-to-convex functions, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 95–93.
- [9] Libera, R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1956), 755–758.
- [10] Liu, J. L., The Noor, integral and strongly starlike functions, J. Math. Anal. Appl. 261 (2001), 441–447.
- [11] Liu, J. L., Noor, K. I., Some properties of Noor integral operator, J. Nat. Geom. 21 (2002), 81–90.
- [12] Ma, W. C., Minda, D., An internal geometric characterization of strongly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 89–97.
- [13] Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Math. J. 28, no. 2 (1981), 157–171.
- [14] Noor, K. I., On new class of integral operator, J. Nat. Geom. 16 (1999), 71-80.
- [15] Noor, K. I., Noor, M. A., On integral operator, J. Math. Anal. Appl. 238 (1999), 341–352.
- [16] Owa, S., Srivastava, H. M., Some applications of the generalized Libera integral operator, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 125–128.
- [17] Sălăgean, G. Ş., Subclasses of univalent functions, Complex analysis fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Springer-Verlag, Berlin, 1983, 362–372.
- [18] Srivastava, H. M., Owa, S. (Editors), Current Topics in Analytic Theory, World Sci. Publ., River Edge, NJ, 1992.
- [19] Uralegaddi, B. A., Somanatha, C., Certain classes of univalent functions, Current Topics in Analytic Function Theory, (Edited by H. M. Srivastava and S. Owa), World Sci. Publ., River Edge, NJ, 1992, 371–374.

M. K. Aouf	R. M. El-Ashwah
Math. Dept., Fac. of Sci.	Math. Dept., Fac. of Sci.
Mansoura University	Mansoura University
Mansoura 35516	Mansoura 35516
Egypt	Egypt
e-mail: mkaouf127@yahoo.com	e-mail: r_ elashwah@yahoo.com

Received November 1, 2008