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Certain subclasses of starlike functions
of complex order involving

the Hurwitz–Lerch Zeta function

Abstract. Making use of the Hurwitz–Lerch Zeta function, we define a new
subclass of uniformly convex functions and a corresponding subclass of starlike
functions with negative coefficients of complex order denoted by TSμ

b (α, β, γ)
and obtain coefficient estimates, extreme points, the radii of close to con-
vexity, starlikeness and convexity and neighbourhood results for the class
TSμ

b (α, β, γ). In particular, we obtain integral means inequalities for the
function f(z) belongs to the class TSμ

b (α, β, γ) in the unit disc.

1. Introduction. Let A denote the class of functions of the form

(1.1) f(z) = z +
∞∑
n=2

anz
n

which are analytic and univalent in the open disc U = {z : z ∈ C, |z| < 1}.
Also denote by T a subclass of A consisting of functions of the form

(1.2) f(z) = z −
∞∑
n=2

anz
n; an ≥ 0, z ∈ U,

introduced and studied by Silverman [25]. For functions f ∈ A given by
(1.1) and g ∈ A given by g(z) = z +

∑∞
n=2 bnz

n, we define the Hadamard
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product (or convolution) of f and g by

(1.3) (f ∗ g)(z) = z +

∞∑
n=2

anbnz
n, z ∈ U.

We recall here a general Hurwitz–Lerch Zeta function Φ(z, s, a) defined
in [28] by

(1.4) Φ(z, s, a) :=

∞∑
n=0

zn

(n+ a)s

(a ∈ C\{Z−
0 }; s ∈ C, R(s) > 1 and |z| = 1) where, as usual, Z−

0 := Z\{N},
(Z := {0,±1,±2,±3, . . . }); N := {1, 2, 3, . . . }. Several interesting proper-
ties and characteristics of the Hurwitz–Lerch Zeta function Φ(z, s, a) can be
found in the recent investigations by Choi and Srivastava [4], Ferreira and
López [5], Garg et al. [7], Lin and Srivastava [16], Lin et al. [17], and oth-
ers. Srivastava and Attiya [27] (see also Rǎducanu and Srivastava [21], and
Prajapat and Goyal [20]) introduced and investigated the linear operator:

Jμ,b : A → A
defined in terms of the Hadamard product by

(1.5) Jμ,bf(z) = Gb,μ ∗ f(z)
(z ∈ U ; b ∈ C \ {Z−

0 }; μ ∈ C; f ∈ A), where, for convenience,
(1.6) Gμ,b(z) := (1 + b)μ[Φ(z, μ, b)− b−μ] (z ∈ U).

We recall here the following relationships (given earlier by [20], [21]) which
follow easily by using (1.1), (1.5) and (1.6)

(1.7) J μ
b f(z) = z +

∞∑
n=2

Cn(b, μ)anz
n,

where

(1.8) Cn = Cn(b, μ) =

∣∣∣∣
(
1 + b

n+ b

)μ∣∣∣∣
and (throughout this paper unless otherwise mentioned) the parameters μ, b
are constrained as b ∈ C \ {Z−

0 }; μ ∈ C.

(1) For μ = 0

(1.9) J 0
b (f)(z) := f(z).

(2) For μ = 1; b = 0

(1.10) J 1
b (f)(z) :=

∫ z

0

f(t)

t
dt := Lf(z) := z +

∞∑
n=2

(
1

n

)
anz

n.
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(3) For μ = 1 and b = ν (ν > −1)

(1.11)

J 1
ν (f)(z) := Fνf(z) =

1 + ν

zν

∫ z

0
tν−1f(t)dt

:= z +

∞∑
n=2

(
1 + ν

n+ ν

)
anz

n.

(4) For μ = σ (σ > 0) and b = 1

(1.12) J σ
1 (f)(z) := z +

∞∑
n=2

(
2

n+ 1

)σ

anz
n = Iσf(z),

where L and Fν are the integral operators introduced by Alexander [1] and
Bernardi [3], respectively, and Iσ is the Jung–Kim–Srivastava integral op-
erator [11] closely related to some multiplier transformation studied by Flet
[6]. Motivated by the study on uniformly convex and uniformly starlike
functions (see [9, 10, 12, 13, 14, 15, 22, 23]) and making use of the operator
J μ
b , we introduce a new subclass of analytic functions with negative coef-
ficients and discuss some usual properties of the geometric function theory
of this generalized function class.
For −1 ≤ α < 1, β ≥ 0 and γ ∈ C\{0}, we let Sμ

b (α, β, γ) be the subclass
of A consisting of functions of the form (1.1) and satisfying the analytic
criterion

(1.13) Re

{
1 +

1

γ

(
z(J μ

b f(z))
′

J μ
b f(z)

− α

)}
> β

∣∣∣∣1 + 1

γ

(
z(J μ

b f(z))
′

J μ
b f(z)

− 1

)∣∣∣∣ ,
z ∈ U where J μ

b f(z) is given by (1.7). We also let

TSμ
b (α, β, γ) = Sμ

b (α, β, γ) ∩ T.

By suitably specializing the values of μ and b, the class TSμ
b (α, β, γ) reduces

to various subclasses as illustrations, we present some examples of the cases.

Example 1. If μ = 0, then

S(α, β, γ) :=

{
f ∈ A : Re

{
1 +

1

γ

(
zf ′(z)
f(z)

− α

)}

> β

∣∣∣∣1 + 1

γ

(
zf ′(z)
f(z)

− 1

)∣∣∣∣ , z ∈ U

}
.

Further TS(α, β, γ) = S(α, β, γ) ∩ T, where T is given by (1.2).

Example 2. If μ = 1; b = 0 and f(z) is as defined in (1.10), then

Rδ(α, β, γ) :=

{
f ∈ A : Re

{
1 +

1

γ

(
z(Lf(z))′
Lf(z) − α

)}

> β

∣∣∣∣1 + 1

γ

(
z(Lf(z))′
Lf(z) − 1

)∣∣∣∣ , z ∈ U

}
.
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Also TRδ(α, β, γ) = Rδ(α, β, γ)∩ T, where T is given by (1.2) and Lf(z) is
given by Lf(z) := z −∑∞

n=2

(
1
n

)
anz

n.

Example 3. If μ = 1, b = ν (ν > −1) and f(z) is as defined in (1.11), then

Bμ(α, β, γ) =

{
f ∈ A : Re

{
1 +

1

γ

(Fνf(z)

Fνf(z)
− α

)}

> β

∣∣∣∣1 + 1

γ

(Fνf(z)

Fνf(z)
− 1

)∣∣∣∣ , z ∈ U

}
.

Further, TBμ(α, β, γ) = Bμ(α, β, γ) ∩ T, where T is given by (1.2) and

Fνf(z) is given by Fνf(z) := z −∑∞
n=2

(
1+ν
n+ν

)
anz

n.

Example 4. If μ = σ (σ > 0), b = 1 and f(z) is defined in (1.12), then

La
c (α, β, γ) :=

{
f ∈ A : Re

{
1 +

1

γ

(
z(Iσf(z))′
Iσf(z) − α

)}

> β

∣∣∣∣1 + 1

γ

(
z(Iσf(z))′
Iσf(z) − 1

)∣∣∣∣ , z ∈ U

}
.

Further TLa
c (α, β, γ) = La

c (α, β, γ)∩T , where T is given by (1.2) and Iσf(z)
is defined by Iσf(z) := z −∑∞

n=2

(
2

n+1

)σ
anz

n.

The main object of this paper is to study some usual properties of the geo-
metric function theory such as the coefficient bound, extreme points, radii
of close to convexity, starlikeness and convexity for the class TSμ

b (α, β, γ).
Further, we obtain neighbourhood results and integral means inequalities
for aforementioned class.

2. Basic properties. In this section we obtain a necessary and sufficient
condition for functions f(z) in the class TSμ

b (α, β, γ).

Theorem 2.1. A necessary and sufficient condition for f(z) of the form
(1.2) to be in the class TSμ

b (α, β, γ) is

(2.1)
∞∑
n=2

[(n+ |γ|)(1− β)− (α− β)]Cnan ≤ (1− α) + |γ|(1− β),

where −1 ≤ α < 1, β ≥ 0 and γ ∈ C\{0}.
Proof. Assume that f(z) ∈ TSμ

b (α, β, γ), then

Re

{
1 +

1

γ

(
z(J μ

b f(z))
′

J μ
b f(z)

− α

)}
> β

∣∣∣∣1 + 1

γ

(
z(J μ

b f(z))
′

J μ
b f(z)

− 1

)∣∣∣∣ ,
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Re

⎧⎪⎪⎨
⎪⎪⎩1 +

1

γ

⎛
⎜⎜⎝
z(1− α)−

∞∑
n=2

(n− α)Cnanz
n

z −
∞∑
n=2

Cnanzn

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

> β

∣∣∣∣∣∣∣∣
1− 1

γ

⎛
⎜⎜⎝

∞∑
n=2

(n− 1)Cnanz
n

z −
∞∑
n=2

Cnanzn

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
.

If we let z → 1 along the real axis, we have⎧⎪⎪⎨
⎪⎪⎩1 +

1

|γ|

⎛
⎜⎜⎝
(1− α)−

∞∑
n=2

(n− α)Cn|an|

1−
∞∑
n=2

Cn|an|

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

> β

⎡
⎢⎢⎣1− 1

|γ|

⎛
⎜⎜⎝

∞∑
n=2

(n− 1)Cn|an|

1−
∞∑
n=2

Cn|an|

⎞
⎟⎟⎠
⎤
⎥⎥⎦ .

The simple computational leads the desired inequality
∞∑
n=2

[(n+ |γ|)(1− β)− (α− β)]Cnan ≤ (1− α) + |γ|(1− β).

Conversely, suppose that (2.1) is true for z ∈ U, then

Re

{
1 +

1

γ

(
z(J μ

b f(z))
′

J μ
b f(z)

− α

)}
− β

∣∣∣∣1 + 1

γ

(
z(J μ

b f(z))
′

J μ
b f(z)

− 1

)∣∣∣∣ > 0

if

1+
1

|γ|

⎛
⎜⎜⎝
(1− α)−

∞∑
n=2

(n− α)Cnan|z|n−1

1−
∞∑
n=2

Cnan|z|n−1

⎞
⎟⎟⎠

− β

⎡
⎢⎢⎣1− 1

|γ|

⎛
⎜⎜⎝

∞∑
n=2

(n− 1)Cnan|z|n−1

1−
∞∑
n=2

Cnan|z|n−1

⎞
⎟⎟⎠
⎤
⎥⎥⎦ ≥ 0,

that is, if
∞∑
n=2

[(n+ |γ|)(1− β)− (α− β)]Cnan ≤ (1− α) + |γ|(1− β),

which completes the proof. �
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Corollary 2.2. Let the function f(z) defined by (1.2) belong to TSμ
b (α, β, γ).

Then

(2.2) an ≤ [(1− α) + |γ|(1− β)]

[(n+ |γ|)(1− β)− (α− β)]Cn

n ≥ 2, −1 ≤ α < 1, β ≥ 0 and γ ∈ C\{0}, with equality for

f(z) = z − [(1− α) + |γ|(1− β)]

[(n+ |γ|)(1− β)− (α− β)]Cn
zn.

In the following theorem we give extreme points for the functions of the
class TSμ

b (α, β, γ).

Theorem 2.3 (Extreme points). Let

(2.3)
f1(z) = z and

fn(z) = z − [(1− α) + |γ|(1− β)]

[(n+ |γ|)(1− β)− (α− β)]Cn
zn for n = 2, 3, 4, . . . .

Then f(z) ∈ TSμ
b (α, β, γ) if and only if f(z) can be expressed in the form

f(z) =
∑∞

n=1 λnfn(z), where λn ≥ 0 and
∑∞

n=1 λn = 1.

The proof of the Theorem 2.3 follows the lines similar to the proof of the
theorem on extreme points given by Silverman [25].

3. Close-to-convexity, starlikeness and convexity. Now, we obtain
the radii of close-to-convexity, starlikeness and convexity for the class
TSμ

b (α, β, γ).

Theorem 3.1. Let f ∈ TSμ
b (α, β, γ). Then f is close-to-convex of order δ

(0 ≤ δ < 1) in the disc |z| < r1, that is Re{f ′(z)} > δ, (0 ≤ δ < 1), where

r1 = inf
n≥2

[
(1− δ)

n

[(n+ |γ|)(1− β)− (α− β)]

[(1− α) + |γ|(1− β)]
Cn

] 1
n−1

.

Proof. Given f ∈ T, and f close-to-convex of order δ, we have

(3.1) |f ′(z)− 1| < 1− δ.

For the left hand side of (3.1) we have

|f ′(z)− 1| ≤
∞∑
n=2

nan|z|n−1.

The last expression is less than 1− δ if
∞∑
n=2

n

1− δ
an|z|n−1 < 1.
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Using the fact that f ∈ TSμ
b (α, β, γ) if and only if

∞∑
n=2

[(n+ |γ|)(1− β)− (α− β)]

(1− α) + |γ|(1− β)
Cnan < 1,

we can say (3.1) is true if

n

1− δ
|z|n−1 ≤ [(n+ |γ|)(1− β)− (α− β)]

(1− α) + |γ|(1− β)
Cn

or, equivalently,

|z| ≤
[
(1− δ)[(n+ |γ|)(1− β)− (α− β)]

n[(1− α) + |γ|(1− β)]
Cn

] 1
n−1

,

which completes the proof. �

Theorem 3.2. Let f ∈ TSμ
b (α, β, γ). Then

(1) f is starlike of order δ (0 ≤ δ < 1) in the disc |z| < r2, that is,

Re
{

zf ′(z)
f(z)

}
> δ, where

r2 = inf
n≥2

{
(1− δ)

(n− δ)

[(n+ |γ|)(1− β)− (α− β)]

[(1− α) + |γ|(1− β)]
Cn

} 1
n−1

and

(2) f is convex of order δ (0 ≤ δ < 1) in the unit disc |z| < r3, that is

Re
{
1 + zf ′′(z)

f ′(z)

}
> δ, where

r3 = inf
n≥2

{
(1− δ)

n(n− δ)

[(n+ |γ|)(1− β)− (α− β)]

[(1− α) + |γ|(1− β)]
Cn

} 1
n−1

.

Each of these results are sharp for the extremal function f(z) given by (2.3).

Proof. Given f ∈ T such that f is starlike of order δ, we have

(3.2)
∣∣∣∣zf ′(z)
f(z)

− 1

∣∣∣∣ < 1− δ.

For the left hand side of (3.2) we have

∣∣∣∣zf ′(z)
f(z)

− 1

∣∣∣∣ ≤
∞∑
n=2

(n− 1)an |z|n−1

1−
∞∑
n=2

an |z|n−1

.

The last expression is less than 1− δ if
∞∑
n=2

n− δ

1− δ
an |z|n−1 < 1.
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Using the fact that f ∈ TSμ
b (α, β, γ) if and only if

∞∑
n=2

[(n+ |γ|)(1− β)− (α− β)]

(1− α) + |γ|(1− β)
Cnan < 1,

we can say (3.2) is true if

n− δ

1− δ
|z|n−1 <

[(n+ |γ|)(1− β)− (α− β)]

(1− α) + |γ|(1− β)
Cn.

Or, equivalently,

|z|n−1 <
(1− δ)[(n+ |γ|)(1− β)− (α− β)]

(n− δ)[(1− α) + |γ|(1− β)]
Cn,

which yields the starlikeness of the family.
Using the fact that f is convex if and only if zf ′ is starlike, we can prove
(2), on lines similar to the proof of (1). �

4. Integral means. Motivated by Silverman [26], the following subordi-
nation result will be required in our present investigation.

Lemma 4.1 ([18]). If the functions f(z) and g(z) are analytic in U with
g(z) ≺ f(z), then

(4.1)

2π∫
0

∣∣∣g(reiθ)∣∣∣η dθ ≤
2π∫
0

∣∣∣f(reiθ)∣∣∣η dθ, η > 0, z = reiθ and 0 < r < 1.

Applying Theorem 2.1 with extremal function and Lemma 4.1, we prove
the following theorem.

Theorem 4.2. Let η > 0. If f(z) ∈ TSμ
b (α, β, γ), and {Φ(α, β, γ, n)}∞n=2 is

a non-decreasing sequence, then for z = reiθ and 0 < r < 1, we have

(4.2)

2π∫
0

∣∣∣f(reiθ)∣∣∣η dθ ≤
2π∫
0

∣∣∣f2(reiθ)∣∣∣η dθ,
where

f2(z) = z − (1− α) + |γ|(1− β)

Φ(α, β, γ, 2)
z2,

and Φ(α, β, γ, n) = [(n+ |γ|)(1− β)− (α− β)]Cn.

Proof. Let f(z) be of the form (1.2) and f2(z) = z− (1−α)+|γ|(1−β)
Φ(α,β,γ,2) z2, then

we must show that
2π∫
0

∣∣∣∣∣1−
∞∑
n=2

anz
n−1

∣∣∣∣∣
η

dθ ≤
2π∫
0

∣∣∣∣1− (1− α) + |γ|(1− β)

Φ(α, β, γ, 2)
z

∣∣∣∣
η

dθ.
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By Lemma 4.1, it suffices to show that

1−
∞∑
n=2

anz
n−1 ≺ 1− (1− α) + |γ|(1− β)

Φ(α, β, γ, 2)
z.

Setting

(4.3) 1−
∞∑
n=2

anz
n−1 = 1− (1− α) + |γ|(1− β)

Φ(α, β, γ, 2)
w(z).

From (4.3) and (2.1), we obtain

|w(z)| =
∣∣∣∣∣
∞∑
n=2

Φ(α, β, γ, n)

(1− α) + |γ|(1− β)
anz

n−1

∣∣∣∣∣
≤ |z|

∞∑
n=2

Φ(α, β, γ, n)

(1− α) + |γ|(1− β)
an

≤ |z| < 1.

This completes the proof of Theorem 4.2. �

5. Inclusion relations involvingNδ(e). To study the inclusion relations
involving Nδ(e) we need the following definitions. Following [2, 8, 19, 24],
we define the n, δ neighbourhood of the function f(z) ∈ T by

(5.1) Nδ(f) =

{
g ∈ T : g(z) = z −

∞∑
n=2

bnz
n and

∞∑
n=2

n|an − bn| ≤ δ

}
.

Particulary for the identity function e(z) = z, we have

(5.2) Nδ(e) =

{
g ∈ T : g(z) = z −

∞∑
n=2

bnz
n and

∞∑
n=2

n|bn| ≤ δ

}
.

Theorem 5.1. Let

(5.3) δ =
2[(1− α) + |γ|(1− β)]

[(2 + |γ|)(1− β)− (α− β)]C2
.

Then TSμ
b (α, β, γ) ⊂ Nδ(e).

Proof. For f ∈ TSμ
b (α, β, γ), Theorem 2.1 yields

[(2 + |γ|)(1− β)− (α− β)]C2

∞∑
n=2

an ≤ (1− α) + |γ|(1− β)

so that

(5.4)
∞∑
n=2

an ≤ (1− α) + |γ|(1− β)

[(2 + |γ|)(1− β)− (α− β)]C2
.



70 G. Murugusundaramoorthy and K. Uma

On the other hand, from (2.1) and (5.4) we have

(1− β)C2

∞∑
n=2

nan ≤ (1− α) + |γ|(1− β) + [(α− β)− |γ|(1− β)]C2

∞∑
n=2

an

≤ (1− α) + |γ|(1− β) + [(α− β)− |γ|(1− β)]

× C2
(1− α) + |γ|(1− β)

[(2 + |γ|)(1− β)− (α− β)]C2

≤ [(1− α) + |γ|(1− β)]2(1− β)

[(2 + |γ|)(1− β)− (α− β)]
,

�(5.5)
∞∑
n=2

nan ≤ 2[(1− α) + |γ|(1− β)]

[(2 + |γ|)(1− β)− (α− β)]C2
.

Now we determine the neighbourhood for each of the class TSμ
b (α, β, γ)

which we define as follows. A function f ∈ T is said to be in the class
TSμ

b (α, β, γ, η) if there exists a function g ∈ TSμ
b (α, β, γ) such that

(5.6)
∣∣∣∣f(z)g(z)

− 1

∣∣∣∣ < 1− η, (z ∈ U, 0 ≤ η < 1).

Theorem 5.2. If g ∈ TSμ
b (α, β, γ) and

(5.7) η = 1− δ[(2 + |γ|)(1− β)− (α− β)]C2

2[((2 + |γ|)(1− β)− (α− β))C2 − ((1− α) + |γ|(1− β))]
,

then Nδ(g) ⊂ TSμ
b (α, β, γ, η).

Proof. Suppose that f ∈ Nδ(g), then we find from (5.1) that

∞∑
n=2

n|an − bn| ≤ δ,

which implies that the coefficient inequality

∞∑
n=2

|an − bn| ≤ δ

2
.

Next, since g ∈ TSμ
b (α, β, γ), we have

∞∑
n=2

bn ≤ 2[(1− α) + |γ|(1− β)]

[(2 + |γ|)(1− β)− (α− β)]C2
.



Certain subclasses of starlike functions of complex order... 71

So that

∣∣∣∣f(z)g(z)
− 1

∣∣∣∣ <
∞∑
n=2

|an − bn|

1−
∞∑
n=2

bn

≤ δ

2

[(2 + |γ|)(1− β)− (α− β)]C2

[((2 + |γ|)(1− β)− (α− β))C2 − ((1− α) + |γ|(1− β))]

≤ 1− η

provided that η is given by (5.7). Thus by definition, f ∈ TSμ
b (α, β, γ, η)

for η given by (5.7), which completes the proof. �

Concluding remarks. By suitably specializing the various parameters in-
volved in Theorem 2.1 to Theorem 5.2, we can state the corresponding
results for the new subclasses defined in Example 1 to Example 4 and also
for many relatively more familiar function classes.
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References

[1] Alexander, J. W., Functions which map the interior of the unit circle upon simple
regions, Ann. of Math. 17 (1915), 12–22.

[2] Altintas, O., Ozkan, O. and Srivastava, H. M., Neighborhoods of a class of analytic
functions with negative coefficients, Appl. Math. Lett. 13 (2000), 63–67.

[3] Bernardi, S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc.
135 (1969), 429–446.

[4] Choi, J., Srivastava, H. M., Certain families of series associated with the Hurwitz–
Lerch Zeta function, Appl. Math. Comput. 170 (2005), 399–409.

[5] Ferreira, C., López, J. L., Asymptotic expansions of the Hurwitz–Lerch Zeta function,
J. Math. Anal. Appl. 298 (2004), 210–224.

[6] Flet, T. M., The dual of an inequality of Hardy and Littlewood and some related
inequalities, J. Math. Anal. Appl. 38 (1972), 746–765

[7] Garg, M., Jain, K. and Srivastava, H. M., Some relationships between the generalized
Apostol–Bernoulli polynomials and Hurwitz–Lerch Zeta functions, Integral Trans-
form. Spec. Funct. 17 (2006), 803–815.

[8] Goodman, A. W., Univalent functions and nonanalytic curves, Proc. Amer. Math.
Soc. 8 (1957), 598–601.

[9] Goodman, A. W., On uniformly convex functions, Ann. Polon. Math. 56 (1991),
87–92.

[10] Goodman, A. W., On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991),
364–370.

[11] Jung, I. B., Kim, Y. C. and Srivastava, H. M., The Hardy space of analytic functions
associated with certain one-parameter families of integral operators, J. Math. Anal.
Appl. 176 (1993), 138–147.

[12] Kanas, S., Wiśniowska, A., Conic regions and k-uniform convexity, J. Comput. Appl.
Math. 105 (1999), 327–336.



72 G. Murugusundaramoorthy and K. Uma

[13] Kanas, S., Wiśniowska, A., Conic domains and starlike functions, Rev. Roumaine
Math. Pures Appl. 45(4) (2000), 647–657.

[14] Kanas, S., Srivastava, H. M., Linear operators associated with k-uniformly convex
functions, Integral Transform. Spec. Funct. 9(2) (2000), 121–132.

[15] Kanas, S., Yaguchi, T., Subclasses of k-uniformly convex and starlike functions de-
fined by generalized derivative. II, Publ. Inst. Math. (Beograd) (N.S.) 69(83) (2001),
91–100.

[16] Lin, S.-D., Srivastava, H. M., Some families of the Hurwitz–Lerch Zeta functions
and associated fractional derivative and other integral representations, Appl. Math.
Comput. 154 (2004), 725–733.

[17] Lin, S.-D., Srivastava, H. M. and Wang, P.-Y., Some expansion formulas for a class
of generalized Hurwitz-Lerch Zeta functions, Integral Transform. Spec. Funct. 17
(2006), 817–827.

[18] Littlewood, J. E., On inequalities in theory of functions, Proc. London Math. Soc.
23 (1925), 481–519.

[19] Murugusundaramoorthy, G., Srivastava H .M., Neighborhoods of certain classes of
analytic functions of complex order, J. Inequal. Pure Appl. Math. 5(2) (2004), Art.
24, 1–8.

[20] Prajapat, J. K., Goyal, S. P., Applications of Srivastava–Attiya operator to the classes
of strongly starlike and strongly convex functions, J. Math. Inequal. 3 (2009), 129–
137.
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