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Boehmians of type S and
their Fourier transforms

Abstract. Function spaces of type S are introduced and investigated in the
literature. They are also applied to study the Cauchy problem. In this paper
we shall extend the concept of these spaces to the context of Boehmian spaces
and study the Fourier transform theory on these spaces. These spaces enable
us to combine the theory of Fourier transform on these function spaces as well
as their dual spaces.

1. Introduction. In [3], function spaces of type S are introduced and the
properties of their Fourier transforms are investigated (see also [4], [5]).
They are also applied to study the Cauchy problem. These spaces are
constructed imposing conditions on the behavior of functions and on the
growth of their derivatives at infinity as the order of the derivative increases
(as is done in the case of generalized functions (see for example [9])). We
shall first recall that the space Sβ

α (α ≥ 0, β ≥ 0) consists of all infinitely
differentiable functions ϕ(x) (−∞ < x <∞) satisfying the inequalities∣∣∣xkϕ(q)(x)

∣∣∣ ≤ CAkBqkkαqqβ ,

where the constants A, B, C depend on the function ϕ. It is also known
that for sufficiently small values of α and β this space degenerates into the
single function ϕ(x) ≡ 0. Hence in order to consider nontrivial spaces we
shall be interested in choosing α and β sufficiently large. Further spaces
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Sα, S
β ,S (here S denotes the usual space of rapidly decreasing functions)

which can be described independently can be related to the space Sβ
α. For

an interesting relationship between these spaces and examples we refer the
reader to [3], [4] and [5]. It should be noted that for β ≤ 1, functions in Sβ

are already analytic in unbounded regions of the complex plane and hence
cannot contain functions of bounded support. However for β > 1 it is known
(see [3]) that the space Sβ

0 contains infinitely differentiable functions with
compact support. Thus by virtue of the inequality Sβ

0 ⊂ Sβ
α for α ≥ 0, we

can safely assume that Sβ
α (β > 1) certainly contains infinitely differentiable

functions with compact support. This fact will be crucial for our construc-
tion of the Boehmian space. Incidentally the Boehmian space we construct
contains also a copy of the dual of Sβ

α (β > 1) (which is denoted as
(
Sβ
α

)′)
and hence a study of Fourier transforms of elements of our Boehmian space
generalizes the theory of Fourier transform on

(
Sβ
α

)′ which is undertaken in
[3].
We shall assume the construction of Boehmian spaces and their properties
(see [6], [7], [8]). In Section 2, we shall develop the preliminaries. In Section
2, we shall construct the Boehmian spaces. In Section 4, we shall define the
Fourier transform and investigate its properties.

2. Preliminaries. In the following we shall define the required function
spaces and obtain some properties. Fix α, β ≥ 0.

Definition 2.1. A function f : R → C is said to be in the family G if it
satisfies the following conditions:
(i) f is an infinitely differentiable function.
(ii)

∣∣f (k)(x)
∣∣ ≤ cn,ke

1
n
|x|1/α for all n ∈ N, x ∈ R, k = 0, 1, 2, . . . .

The topology on G is given by the following countable separating family
of semi-norms

Pn,k(f) = sup
x∈R, q≤k

∣∣f (q)(x)
∣∣e(− 1

n
|x|1/α) n = 1, 2, 3, . . . , k = 0, 1, 2, . . . .

It is easy to show that G is a Fréchet space.

Definition 2.2. A function ϕ : R→ C is said to be in Sβ
α if

(i) ϕ is an infinitely differentiable function.
(ii)

∣∣xkϕ(q)(x)
∣∣ ≤ CAkBqkkαqqβ (k = 0, 1, 2, . . . , q = 0, 1, 2, . . . ) where

A,B and C are constants depending on ϕ.

Here we assume that kkα = 1 for k = 0 and qqβ = 1 for q = 0.
From [3] it follows that the space Sβ

α defined above is a countable union
of Fréchet spaces which are denoted by Sβ,B

α,A where A,B = 1, 2, . . . . We
also recall the following theorem from [1] and [2].

Theorem 2.3. If α+ β ≥ 1, then the following are equivalent:
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(1) ϕ ∈ Sβ
α.

(2) sup
x∈R

|ϕ(x)|e(h|x|1/α)<∞ and sup
t∈R

|ϕ̂(t)|e(k|t|1/β)<∞ for some h, k > 0.

Definition 2.4. A function ϕ : R → C is said to be in the space Tn,m

(n,m ∈ N) if it satisfies the following conditions:
(i) ϕ is infinitely differentiable.
(ii) ||ϕ||n,m = sup

x∈R
|ϕ(x)|e( 1

n
|x|1/α) + sup

t∈R
|ϕ̂(t)|e( 1

m
|t|1/β) <∞.

Here

ϕ̂(t) =

∫
R

ϕ(x)e−itxdx (t ∈ R).

It is also clear that if n < n′ and m < m′, then Tn,m ⊂ Tn′,m′ and that if
the sequence {ϕk} is such that ϕk → ϕ as k →∞ in Tn,m, then ϕk → ϕ as
k →∞ in Tn′,m′ . For this reason it is possible to define the countable union
space containing all the spaces Tn,m where n,m vary over the set of natural
numbers. In view of Theorem 2.3 and Definition 2.4 above, it easily follows
that this countable union space is identical with Sβ

α.

Definition 2.5. (1) A sequence of functions {ϕn} in Sβ
α is said to converge

to a function ϕ ∈ Sβ
α, if there exist n′ and m′ in N such that all ϕn and ϕ are

in Tn′,m′ and ϕn → ϕ in Tn′,m′ as n→∞. This means that ||ϕn−ϕ||n′,m′ →
0 as n→∞.
(2) By a continuous linear functional on the countable union space Sβ

α =⋃
n,m

Tn,m, we mean a linear functional on Sβ
α which is continuous on eve-

ry space Tn,m. The set of all continuous linear functionals on the above
countable union space will be denoted by

(
Sβ
α

)′.
Note 2.6. The above definitions are analogous to the definitions of a con-
tinuous linear functional and the dual

(
Sβ
α

)′ of the countable union space
Sβ
α described in [3].
Using the equivalence of sup-norm and L2-norm on the space Sβ,B

α,A and
Landau type inequalities, one can prove (this involves detailed computations
which are routine and hence are omitted) the following.
(i) Given natural numbers n, m and ϕ ∈ Tn,m, we can find A,B such
that ‖ϕ‖δ,ρ ≤ C‖ϕ‖n,m for every δ, ρ ∈ (0, 1] where ‖ϕ‖δ,ρ refers to the
semi-norms defined on Sβ,B

α,A as given in [3].

(ii) Given A,B (A,B = 1, 2, 3, . . . ) and ϕ ∈ Sβ,B
α,A , we can find n and m

such that ‖ϕ‖n,m ≤ C ′‖ϕ‖δ,ρ for every δ, ρ ∈ (0, 1].

In view of the above observations the following remarks are obvious.
(i) The dual of Sβ

α as described in [3] is identical with the dual of S
β
α as

given in our Definition 2.5.
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(ii) The countable union of the spaces Tn,m (which is S
β
α) is also complete.

However, there is a vital difference between the countable union space
described here and the one given in [3]. On the one hand, the spaces Sβ,B

α,A

given in [3] are Fréchet spaces whereas on the other, we have chosen the
spaces Tn,m as merely normed spaces.

Lemma 2.7. Every function in G can be regarded as a continuous linear
functional on Sβ

α, i.e. each element of G can be considered as a regular
element of the dual space

(
Sβ
α

)′.
Proof. Let f ∈ G. We show that f can be considered as a continuous linear
functional on Tn,m for each n,m ∈ N as follows:

f(ϕ) =

∫
R

f(x)ϕ(x)dx (ϕ ∈ Tn,m).

Using canonical estimates, it is an easy exercise to show that f defines a
continuous linear functional on Tn,m. We leave the details. �

For the construction of our Boehmian space, we need functions with com-
pact support, inside Sβ

α. But this will happen when β > 1. (Note that when
β > 1, Sβ

0 contains functions of bounded support (see [3]) and S
β
0 ⊂ Sβ

α, for
any α > 0). For this reason, hereafter we shall consider spaces Sβ

α only for
β > 1 unless explicitly specified otherwise.

Definition 2.8. A function ϕ : R → C is said to be in the space S if ϕ is
in D ∩ Sβ

α.

It is easy to verify that if ϕ ∈ S, then ϕ ∈ Tn,m ∩G for each n ∈ N and
some m ∈ N.

Definition 2.9. Let f ∈ G and ϕ ∈ S. The convolution of f and ϕ is
defined as

(f ∗ ϕ)(x) =
∫
R

f(x− t)ϕ(t)dt (x ∈ R).

Clearly the integral in the above definition exists and hence f ∗ϕ is well-
-defined. Further the qth derivative of f ∗ ϕ exists and is defined by

(f ∗ ϕ)(q)(x) = (
f (q) ∗ ϕ)(x).

Definition 2.10. Let u ∈ (
Sβ
α

)′ and ϕ ∈ S. We define the convolution
product of u and ϕ in the canonical way by

(u ∗ ϕ)(x) = u (τxϕ̌) (x ∈ R)

where ϕ̌(t) = ϕ(−t) and (τxϕ)(t) = ϕ(x− t).
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Note that if ϕ ∈ Tn,m, then for any x ∈ R, τxϕ̌ is in Tn′,m with n′ ≥ nk
where

(1) k =

{
2(

1
α
−1) for α < 1

1 for α ≥ 1.

In particular, if ϕ ∈ S, then for any x ∈ R, τxϕ̌ ∈ S.

Lemma 2.11. Let f ∈ G, ϕ ∈ S. Then f ∗ ϕ ∈ G and if further f ∈ S,
then f ∗ ϕ ∈ S and f ∗ ϕ = ϕ ∗ f .
Proof. Follows easily using simple computations. We leave the details. �

Theorem 2.12. Let u ∈ (
Sβ
α

)′, ϕ ∈ S. Then u ∗ ϕ ∈ G.

Proof. Since ϕ ∈ S, ϕ is in Tn1,m1 for some n1,m1 ∈ N. (Note that ϕ is in
Tn1,m1 for all n1 ∈ N). Choose n′ ≥ n1k and m′ ≥ m1 with k as in (1) so
that τxϕ̌ ∈ Tn′,m′ for all x ∈ R.
Indeed, using standard arguments and computations we can easily prove
the following:
(i) If xn → x as n→∞, then ||τxnϕ̌− τxϕ̌||n′,m′ → 0 as n→∞.
(ii) u ∗ ϕ is infinitely differentiable.
(iii)

∣∣(u ∗ ϕ)(q)(x)∣∣ ≤ cn,qe
1
n
|x|1/α (n ∈ N, q = 0, 1, 2, . . . and x ∈ R).

Using the above steps, we see that u ∗ ϕ ∈ G, completing the proof. �

3. Construction of Boehmians. The general construction of Boehmians
is given in detail in the literature (see [6], [7], [8]). We shall briefly recall this
construction for the sake of completeness. LetG be an additive commutative
semi group, S ⊂ G and ∗ : G× S → G satisfy

(i) If ϕ, ψ ∈ S, then ϕ ∗ ψ ∈ S and ϕ ∗ ψ = ψ ∗ ϕ.
(ii) If f ∈ G and ϕ, ψ ∈ S, then (f ∗ ϕ) ∗ ψ = f ∗ (ϕ ∗ ψ).
(iii) If f, g ∈ G and ϕ ∈ S, then (f + g) ∗ ϕ = f ∗ ϕ+ g ∗ ϕ.

Let Δ be the class of all sequences (ϕn) in S (called delta sequences) satis-
fying

(i) If f, g ∈ G, (ϕn) ∈ Δ and f ∗ ϕn = g ∗ ϕn for all n, then f = g.
(ii) If (ϕn), (ψn) ∈ Δ, then (ϕn ∗ ψn) ∈ Δ.

Let A denote the collection of all pairs of sequences ((fn), (ϕn)) where
fn ∈ G (n ∈ N) and (ϕn) ∈ Δ satisfying the following property

fn ∗ ϕm = fm ∗ ϕn for all n,m ∈ N.

Each element of A is called a quotient. Define a relation ∼ (which can be
easily verified as an equivalence relation) on A by

((fn), (ϕn)) ∼ ((gn), (ψn)) ⇐⇒ fn ∗ ψm = gm ∗ ϕn ∀n,m ∈ N.
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Let B(G,Δ) = A / ∼, the set of all equivalence classes in A . Elements of
B(G,Δ) are called Boehmians and a typical element containing ((fn), (ϕn))

is denoted by
[
fn
ϕn

]
.

Now we construct the Boehmian space B(G,Δ), where G and S are as in
Section 2. The convolution product defines a map

∗ : G× S → G

having the required properties (easy to verify).
Let Δ be the class of all sequences (δn) in S satisfying the conditions:∫

R

δn(x)dx = 1 (n ∈ N)(2)

∫
R

|δn(x)|dx ≤M (n ∈ N)(3)

lim
n→∞

∫
|x|≥ε

(
e(

1
m
|x|1/α) − 1

)
|δn(x)|dx = 0, for each m ∈ N and ε > 0.(4)

We now show that the class Δ satisfies the following required properties of
“Delta sequences”.

Lemma 3.1. Let (ϕn) ∈ Δ. For each fixed m ∈ N and ε > 0, the condition

lim
n→∞

∫
|x|≥ε

(
e(

1
m
|x|1/α) − 1

)
|ϕn(x)|dx = 0

is equivalent to

lim
n→∞

∫
R

(
e(

1
m
|x|1/α) − 1

)
|ϕn(x)|dx = 0.

Proof. Let η > 0 and fix m ∈ N. It suffices to prove that

lim
n→∞

∫
|x|≥ε

(
e(

1
m
|x|1/α) − 1

)
|ϕn(x)|dx = 0

=⇒ lim
n→∞

∫
R

(
e(

1
m
|x|1/α) − 1

)
|ϕn(x)|dx = 0.

Assume

lim
n→∞

∫
|x|≥ε

(
e(

1
m
|x|1/α) − 1

)
|ϕn(x)|dx = 0 (∀ ε > 0).

Choose δ > 0 such that

e
1
m
|x|1/α − 1 <

η

2M
whenever |x| < δ
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where M is as in (3). Now∫
R

(
e(

1
m
|x|1/α) − 1

)
|ϕn(x)|dx

=

∫
|x|<δ

(
e(

1
m
|x|1/α) − 1

)
|ϕn(x)|dx+

∫
|x|≥δ

(
e(

1
m
|x|1/α) − 1

)
|ϕn(x)|dx

<
η

2
+

η

2
= η

for sufficiently large n. This completes the proof. �

Theorem 3.2. If f ∈ G and (ϕn) ∈ Δ, then f ∗ ϕn → f as n→∞ in G.

Proof. We have to prove that Pm,p(f ∗ ϕn − f) → 0 as n → ∞ for each
m ∈ N and p = 0, 1, 2, . . . . Fix m, p and a constant K > 0. Choose
a compact set H such that for x �∈ H,

e(
1
m′− 1

m)|x|1/α <
ε

4K
,

where m′ ≥ mk (with k as in (1)). Using the uniform continuity of f (q)

(q = 0, 1, . . . ) on a compact set larger than H, say H1, we can get a δ > 0
such that whenever |y| < δ and x ∈ H1, we have∣∣∣f (q)(x− y)− f (q)(x)

∣∣∣ < ε

4M
.

Fix this δ > 0. For |x| ≥ δ, we have

(5) e
1
m
|x|1/α + 1 ≤ C

(
e

1
m
|x|1/α − 1

)
where C = 2

1−e
−1
m |δ|1/α , which can be easily verified.

We now consider

Pm,p(f ∗ ϕn − f) ≤ sup
x∈R, q≤p

e
−1
m

|x|1/α
∫
R

∣∣∣f (q)(x− y)− f (q)(x)
∣∣∣ |ϕn(y)|dy

= sup
x∈H1, q≤p

e
−1
m

|x|1/α
∫
R

∣∣∣f (q)(x− y)− f (q)(x)
∣∣∣ |ϕn(y)|dy

+ sup
x �∈H1, q≤p

e
−1
m

|x|1/α
∫
R

∣∣∣f (q)(x− y)− f (q)(x)
∣∣∣ |ϕn(y)|dy

= I1 + I2,

say. Hence

(6) Pm,p (f ∗ ϕn − f) ≤ I1 + I2.



34 R. Bhuvaneswari and V. Karunakaran

Now the integral I1 can be split as a sum of two integrals, say J1 and J2,
where

J1 = sup
x∈H1,q≤p

e−
1
m
|x|1/α

∫
|y|<δ

∣∣∣f (q)(x− y)− f (q)(x)
∣∣∣ |ϕn(y)|dy

and

J2 = sup
x∈H1,q≤p

e
−1
m

|x|1/α
∫

|y|≥δ

∣∣∣f (q)(x− y)− f (q)(x)
∣∣∣ |ϕn(y)|dy.

Using the uniform continuity of f (q) on H1, we have

J1 ≤ ε

4M

∫
|y|<δ

|ϕn(y)|dy ≤ ε

4
.

Note that for any integer m′,

(7)

∣∣∣f (q)(x− y)− f (q)(x)
∣∣∣ ≤ ∣∣∣f (q)(x− y)

∣∣∣+ ∣∣∣f (q)(x)
∣∣∣

≤ Cm′,q

(
e

1
m′ |x−y|1/α + e

1
m′ |x|1/α

)
≤ Cm′,q

(
e

k
m′ (|x|1/α+|y|1/α) + e

1
m′ |x|1/α

)
.

Take m′ ≥ mk (with k as in (1)) in equation (7) and use this estimate and
(5) in J2 to get

J2 ≤ sup
x∈H1,q≤p

e(
1
m′− 1

m)|x|1/α
∫

|y|≥δ

Cm′,q

(
e

1
m′ |y|1/α + 1

)
|ϕn(y)|dy

≤ CCm′,p

∫
|y|≥δ

(
e

1
m1

|y|1/α − 1
)
|ϕn(y)|dy

<
ε

4

for sufficiently large n. Thus

(8) I1 → 0 as n→∞.

It is now easy to see that

I2 ≤ sup
x �∈H1,q≤p

e(
1
m′− 1

m)|x|1/α
∫
R

Cm′,q

(
e

1
m′ |y|1/α + 1

)
|ϕn(y)|dy

with m′ ≥ mk. By a standard argument we can now show that

(9) I2 → 0 as n→∞.

The theorem follows from (6), (8) and (9). �
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Theorem 3.3. Let f, g ∈ G and (ϕn) ∈ Δ. If f ∗ϕn = g ∗ϕn for all n ∈ N,
then f = g in G.

Proof. Follows from Theorem 3.2. �
Theorem 3.4. Let (ϕn), (ψn) be any two sequences in Δ. Then (ϕn ∗ ψn)
is also a sequence in Δ.

Proof. Using Fubini’s theorem (wherever necessary), the properties of the
class Δ, Lemma 3.1 and some standard arguments, the result follows. We
leave the details. �
Theorem 3.3 and Theorem 3.4 together prove that the class Δ can be
used as “Delta sequences” for the construction of our Boehmian space. The
resulting Boehmian space will be denoted as B(G,Δ).

Definition 3.5. Let G′ =
(
Sα
β

)′ and S′ = Ŝ where Ŝ denotes the set of all

Fourier transforms of elements of S = D ∩ Sβ
α. The map G′ × S′ to G′ is

taken as the canonical product defined as follows:

(uψ)(φ) = u(ψφ) (φ ∈ Sα
β , u ∈ G′ and ψ ∈ S′).

Let
Δ′ = Δ̂ = {(ϕ̂n) : (ϕn) ∈ Δ} .

Instead of equipping
(
Sβ
α

)′ with the canonical weak* convergence, we shall
define a different notion of convergence as follows.

Definition 3.6. A sequence {un} in
(
Sβ
α

)′ converges to u ∈ (
Sβ
α

)′, if for
every m, k ∈ N there exists a sequence {cn,m,k} with cn,m,k → 0 as n → ∞
such that for all ψ ∈ Tm,k ⊂ Sβ

α,

|(un − u)(ψ)| ≤ cn,m,k||ψ||m,k.

Hereafter convergence in
(
Sβ
α

)′ means the above convergence only, unless
stated otherwise.

Theorem 3.7. un → u as n→∞ in (Sβ
α

)′ if and only if ûn → û as n→∞
in

(
Sα
β

)′.
Proof. The result follows from the definition of convergence and the facts
that û(ϕ) = u(ϕ̂) (u ∈ (

Sβ
α

)′, ϕ ∈ Sα
β ) and ||ψ||p,q = ‖ψ̂‖q,p (ψ ∈ Sβ

α). �

Theorem 3.8. If fn → 0 as n→∞ in G, then fn → 0 as n→∞ in (Sβ
α

)′.
Proof. Since fn → 0 as n → ∞ in G, Pm,q(fn) → 0 as n → ∞ for all
m ∈ N, q = 0, 1, 2, . . . . For any ϕ ∈ Tn′,m′ ⊂ Sβ

α, choose m > n′ and
consider

|fn(ϕ)| ≤
∫
R

|fn(x)||ϕ(x)|dx.
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A simple computation shows that

|fn(ϕ)| ≤ cn||ϕ||n′,m′ ,

where

cn = Pm,0(fn)

∫
R

e(
1
m
− 1

n′ )|x|1/αdx→ 0 as n→∞.

This shows that fn → 0 as n→∞ in (Sβ
α

)′. This proves the theorem. �

Theorem 3.9. Let un → 0 as n→∞ in (
Sβ
α

)′ and ϕ ∈ S then un ∗ ϕ→ 0
as n→∞ in G.

Proof. Since un → 0 as n→∞, for any ψ ∈ Tn′,m′ there exists a sequence
{cn} (depending on n′ and m′) with cn → 0 as n→∞ such that

|un(ψ)| ≤ cn||ψ||n′,m′ .

We fix m and q and consider the semi-norm Pm,q. ϕ ∈ S (ϕ ∈ Tr,s for
all r and some s) implies that τx

(
ϕ(q)

)̌ ∈ S (q = 0, 1, 2, . . . and for each
fixed x ∈ R) and hence τx

(
ϕ(q)

)̌ ∈ Tr′,s′ where r′ > max{r,m} and s′ ≥ s.
Consider

Pm,q(un ∗ ϕ) = sup
x∈R, p≤q

∣∣∣un(τx(ϕ(p)
)̌ )∣∣∣ e−1

m
|x|1/α

≤ sup
x∈R, p≤q

cn

∥∥∥τx(ϕ(p)
)̌ ∥∥∥

r′,s′
e

−1
m

|x|1/α

≤ cn sup
x∈R

e(
k
r′− 1

m)|x|1/α sup
p≤q

∥∥∥ϕ(p)
∥∥∥
r′,s′

≤ C ′cn ‖ϕ‖r,s
(with k as in (1)) where

∥∥(ϕ(q)
)̌ ∥∥

r′,s′ ≤ Cp‖ϕ‖r,s and

C ′ = sup
x∈R

e(
k
r′− 1

m)|x|1/α sup
p≤q

Cp <∞.

Hence
Pm,q(un ∗ ϕ) ≤ C ′cn‖ϕ‖r,s.

As n→∞, cn → 0 implies that Pm,q(un∗ϕ)→ 0 as n→∞. This completes
the proof of our theorem. �

Theorem 3.10. Let u ∈ (
Sα
β

)′ and (ϕ̂n) ∈ Δ′. Then uϕ̂n → u as n → ∞
in

(
Sα
β

)′.
Proof. Fix m, k ∈ N. Let ψ ∈ Tm′,k′ ⊂ Sα

β . As u ∈
(
Sα
β

)′, there is a
positive constant C such that

|u(ψ)| ≤ C||ψ||m′,k′
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for all ψ ∈ Tm′,k′ . A simple computation shows that

|(uϕ̂n − u)(ψ)| ≤ C||ϕ̂nψ − ψ||p,q,
where p > km′ and q > kk′ with k as in (1).
Consider

||ϕ̂nψ−ψ||p,q = sup
x∈R

|(ϕ̂nψ)(x)−ψ(x)|e 1
p
|x|1/β

+sup
t∈R

|(ϕ̌n∗ψ̂)(t)−ψ̂(t)|e 1
q
|t|1/α

.

Choosing p and q sufficiently large we have

||ϕ̂nψ − ψ||p,q ≤ c′n||ψ||m′,k′ + d′n
∥∥∥(ψ̂)′∥∥∥

p′,q′
,

where

c′n = sup
x∈R

|ϕ̂n(x)− 1|e
(

1
p
− 1

m′
)
|x|1/β

and

d′n = K

∫
R

|ϕ̌n(y)||y|e 1
m
|y|1/αdy

with mk < q, k as in (1) and K, a constant. Using simple computations we
can prove that the sequences {c′n} and {d′n} tend to zero as n→∞. Using
the continuity of differentiation, we can get that∥∥∥(ψ̂)′∥∥∥

p′,q′
≤ C ′

∥∥∥ψ̂∥∥∥
k′,m′

≤ C ′||ψ||m′,k′ .

Thus, we have
||ϕ̂nψ − ψ||p,q ≤ cn||ψ||m′,k′ ,

where cn = C ′d′n + c′n → 0 as n → ∞. This completes the proof of our
theorem. �
The following theorems can be easily verified. We leave the details.

Theorem 3.11. Let v1, v2 ∈ G′ and (σn) ∈ Δ′. If v1σn = v2σn for all n,
then v1 = v2 in G′.

Theorem 3.12. If (an), (bn) ∈ Δ′, then (anbn) ∈ Δ′.

Using G′ and Δ′ as G and Δ we can now construct a Boehmian space in
a canonical way. This Boehmian space will be denoted by B(G′,Δ′). We
shall now obtain some properties of sequences in G and G′.

Theorem 3.13. Let fn → f as n→∞ in G and ϕ ∈ S. Then fn∗ϕ→ f ∗ϕ
as n→∞ in G.

Proof. Since fn → f as n→∞ in G, for any m ∈ N and q = 0, 1, 2, . . .

Pm,q(fn − f)→ 0 as n→∞.

Fix m ∈ N and q ∈ N ∪ {0}. As ϕ ∈ S, choose r and m′ so that m′ > mk
and m′ > rk (with k as in (1)) and ϕ ∈ Tr,s.
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Consider

Pm,q((fn − f) ∗ ϕ) ≤ sup
x∈R, p≤q

∫
R

∣∣∣(fn − f)(p)(y)
∣∣∣ |ϕ(x− y)|e− 1

m
|x|1/αdy

≤ sup
x∈R, p≤q

∫
R

∣∣∣(fn − f)(p)(y)
∣∣∣ |ϕ(x− y)|e− 1

m
|x|1/αe

1
m′ |y|1/αe−

1
m′ |y|1/αdy

≤ sup
x∈R

e(
k
m′− 1

m)|x|1/αPm′,q(fn − f)

∫
R

|ϕ(x− y)|e k
m′ |x−y|1/αdy

(substituting t = x− y)

≤ Pm′,q(fn − f)

∫
R

|ϕ(t)|e k
m′ |t|1/αdt

≤ Pm′,q(fn − f)‖ϕ‖r,s
∫
R

e(
k
m′− 1

r )|t|1/αdt.

Since

‖ϕ‖r,s
∫
R

e(
k
m′− 1

r )|t|1/αdt

is finite and Pm′,q(fn − f)→ 0 as n→∞ we have
Pm,q(fn ∗ ϕ− f ∗ ϕ)→ 0 as n→∞.

This completes the proof. �
Theorem 3.14. Let fn → f as n→∞ in G and (ϕn) ∈ Δ. Then fn∗ϕn →
f as n→∞ in G.

Proof. Since fn → f as n→∞ in G, for any m ∈ N and q = 0, 1, 2, . . .

Pm,q(fn − f)→ 0 as n→∞.

Also
(fn ∗ ϕn)− f = ((fn − f) ∗ ϕn) + (f ∗ ϕn − f).

By Theorem 3.2, f ∗ ϕn → f as n→∞ in G. To prove the required result
it is enough to prove that (fn − f) ∗ ϕn → 0 as n→∞ in G.
Fix m and q and choose m′ > mk (k is a constant as in (1)). Consider

Pm,q((fn − f) ∗ ϕn) = sup
x∈R, p≤q

∣∣∣((fn − f)(p) ∗ ϕn

)
(x)

∣∣∣ e− 1
m
|x|1/α

≤ sup
x∈R, p≤q

e−
1
m
|x|1/α

∫
R

∣∣∣(f (p)
n − f (p)

)
(x− y)

∣∣∣ |ϕn(y)|dy.

A simple computation shows that

Pm,q((fn − f) ∗ ϕn) ≤M ′Pm′,q(fn − f),
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where

M ′ = sup
x∈R

e(
k
m′− 1

m)|x|1/α
∫

x∈R
|ϕn(y)|e 1

m
|y|1/αdy <∞

(since (ϕn) ∈ Δ). Pm′,q(fn − f)→ 0 as n→∞ implies that
Pm,q((fn − f) ∗ ϕn)→ 0 as n→∞.

This completes the proof. �
Theorem 3.15. Let vn → v as n→∞ in G′ and ψ ∈ S′. Then vnψ → vψ
as n→∞ in G′.

Proof. Follows easily from the Theorems 3.7, 3.8 and 3.9. �
Theorem 3.16. Let vn → v as n → ∞ in G′ and (ϕ̂n) ∈ Δ′. Then
vnϕ̂n → v as n→∞ in G′.

Proof. Since vn → v as n→∞ in G′, for any φ ∈ Tm′,n′ ⊂ Sα
β , there exists

constants cn depending on m′ and n′ with cn → 0 as n→∞ such that
(10) |(vn − v)(φ)| ≤ cn||φ||m′,n′ .

As v ∈ G′, there exists a constant C such that

(11) |v(φ)| ≤ C||φ||m′,n′ (ϕ ∈ Tm′,n′).

Now

(12) |(vnϕ̂n − v)(φ)| ≤ |(vn − v)(ϕ̂nφ)|+ |v(ϕ̂nφ− φ)|.
As in the proof of Theorem 3.10, we have

‖ϕ̂nφ− φ‖q,p ≤ c′n||φ||m′,n′ where c′n → 0 as n→∞
and hence

||ϕ̂nφ||q,p ≤ (c′n + 1)||φ||m′,n′ .

Thus from (10), (11) and (12), we have

|(vnϕ̂n − v)(φ)| ≤ dn||φ||m′,n′ ,

where dn = cn(c
′
n +1)+Cc′n → 0 as n→∞. This completes the proof. �

Definition 3.17. A sequence of Boehmians {Xn} in B(G,Δ) is said to

δ-converge to a Boehmian X ∈ B(G,Δ) denoted by Xn
δ→ X, if there

exists a delta sequence (δk) ∈ Δ such that Xn ∗ δk and X ∗ δk are in G for
k = 1, 2, . . . and

Xn ∗ δk → X ∗ δk
in G as n→∞, for each k = 1, 2, 3, . . . .

Theorem 3.18. The mapping T1 :
(
Sβ
α

)′ → B(G,Δ) defined by T1(u) =[
u∗ϕn

ϕn

]
where (ϕn) ∈ Δ is any delta sequence, is a continuous imbedding of(

Sβ
α

)′ in B(G,Δ).
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Proof. If u ∈ (
Sβ
α

)′ and (ϕn) ∈ Δ, then by Theorem 2.12, fn = u∗ϕn ∈ G,
for all n. Using the associativity of convolutions we can prove that

fn ∗ ϕm = fm ∗ ϕn, (m,n ∈ N).

Hence
[
fn
ϕn

]
∈ B(G,Δ). We first show that T1 is one-one.

If
[
u∗ϕn

ϕn

]
=

[
v∗ϕn

ϕn

]
in B(G,Δ), then

(u ∗ ϕn) ∗ ϕm = (v ∗ ϕm) ∗ ϕn in G (m,n ∈ N).

(u ∗ ϕm) ∗ ϕn = (v ∗ ϕm) ∗ ϕn in G (m,n ∈ N).

By Theorem 3.3, we get u∗ϕm = v ∗ϕm in G for all m ∈ N. Taking Fourier
transform on both sides, we get that

ϕ̂mû = ϕ̂mv̂ in
(
Sα
β

)′
(m ∈ N).

Applying Theorem 3.11 we get û = v̂ in
(
Sα
β

)′ and hence u = v in
(
Sβ
α

)′.
This proves that T1 is one-one.
To prove that T1 is continuous, let us assume that um → 0 as m → ∞
in

(
Sβ
α

)′. Corresponding to each um ∈ (
Sβ
α

)′, consider Xm =
[
um∗ϕn

ϕn

]
∈

B(G,Δ). We now prove thatXm
δ→ 0 asm→∞ in B(G,Δ). Take (ϕk) ∈ Δ

and consider Xm ∗ ϕk = um ∗ ϕk ∈ G for k ∈ N. Since um → 0 as m → ∞
in

(
Sβ
α

)′. Applying Theorem 3.9 we get that
um ∗ δk → 0

in G as m→∞ (k ∈ N). This shows that Xm
δ→ 0 as m→∞ in B(G,Δ).

This completes the proof of our theorem. �

Theorem 3.19. The mapping T2 : G′
(
=

(
Sα
β

)′) → B(G′,Δ′) defined by

T2(v) =
[
vϕ̂n

ϕ̂n

]
where (ϕ̂n) ∈ Δ′ is any delta sequence, is a continuous

imbedding of G′ in B(G′,Δ′).

Proof. Since v ∈ G′ and (ϕ̂n) ∈ Δ′, vϕ̂n ∈ G′ for all n ∈ N. Simple
computation shows that

(vϕ̂n)ϕ̂m = (vϕ̂m)ϕ̂n in G′ (m,n ∈ N).

Hence
[
vϕ̂n

ϕ̂n

]
∈ B(G′,Δ′). As above in the proof of Theorem 3.18, using

Theorems 3.11, 3.15 and 3.16, we can show that T2 is a continuous one-one
imbedding of G′ in B(G′,Δ′). �
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4. Fourier Transform. Let X =
[
fn
ϕn

]
∈ B(G,Δ). Since fn ∈ G, f̂n ∈ G′

for n = 1, 2, 3, . . . . As (ϕn) ∈ Δ, (ϕ̂n) ∈ Δ′. Also ((fn), (ϕn)) is a quotient
in B(G,Δ) implies that

fm ∗ ϕn = fn ∗ ϕm, (m,n ∈ N).

Taking Fourier transform on both sides, we have

f̂mϕ̂n = f̂nϕ̂m in G′ (m,n ∈ N).

This proves that
(
(f̂n), (ϕ̂n)

)
is a quotient in B(G′,Δ′). We can therefore

define the Fourier transform of X (denoted as X̂) by X̂ =
[
f̂n
ϕ̂n

]
∈ B(G′,Δ′).

It is also easy to see that this is well-defined.

Definition 4.1. Let X =
[
fn
ϕn

]
, Y =

[
gn
ψn

]
∈ B(G,Δ) and ψ ∈ S. Define

(i) X + Y =
[
fn∗ψn+gn∗ϕn

ϕn∗ψn

]
∈ B(G,Δ).

(ii) αX =
[
αfn
ϕn

]
∈ B(G,Δ) (α ∈ C).

(iii) X ∗ ψ =
[
fn∗ψ
ϕn

]
∈ B(G,Δ).

(iv) X̂ + Ŷ =
[
ψ̂nf̂n+ϕ̂nĝn

ϕ̂nψ̂n

]
∈ B(G′,Δ′).

(v) αX̂ =
[
αf̂n
ϕ̂n

]
∈ B(G′,Δ′) (α ∈ C).

(vi) ψ̂X̂ =
[
ψ̂f̂n
ϕ̂n

]
∈ B(G′,Δ′).

The following properties follow easily from the definitions.

Theorem 4.2. The Fourier transform T : B(G,Δ)→ B(G′,Δ′) defined by
T (X) = X̂ is a bijective, bi-continuous mapping with the following proper-
ties.

(i) (X + Y )̂ = X̂ + Ŷ (X,Y ∈ B(G,Δ)).
(ii) (αX )̂ = αX̂ (α ∈ C).
(iii) (X ∗ ψ)̂ = ψ̂X̂ (ψ ∈ S).

Proof. Let us first prove that T is one-one. If
[
f̂n
ϕ̂n

]
=

[
ĝn
ψ̂n

]
∈ B(G′,Δ′).

Then
f̂nψ̂m = ĝmϕ̂n in G′ (m,n ∈ N)

and taking the Fourier transform, we get

fn ∗ ψm = gm ∗ ϕn in
(
Sβ
α

)′
(m,n ∈ N).

Thus
fn ∗ ψm ∗ ϕn = gm ∗ ϕn ∗ ϕn in G (m,n ∈ N).

Hence [
fn
ϕn

]
=

[
fn ∗ ϕn

ϕn ∗ ϕn

]
=

[
gn
ψn

]
∈ B(G,Δ).
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This proves that T is one-one.
T is onto: Let Y =

[
gn
ϕ̂n

]
∈ B(G′,Δ′). Since gn ∈ G′, there exists fn ∈(

Sβ
α

)′ such that gn = f̂n (n ∈ N). As (ϕn) ∈ Δ, fn ∗ ϕn ∈ G for n ∈ N

and hence X =
[
fn∗ϕn

ϕn∗ϕn

]
∈ B(G,Δ) such that X̂ = Y . This proves that T

is onto.
T is continuous: Let Xn

δ→ X as n → ∞ in B(G,Δ). Then there exists
a delta sequence (δk) ∈ Δ such that Xn ∗ δk, X ∗ δk ∈ G (n, k ∈ N) and

Xn ∗ δk → X ∗ δk as n→∞ in G (k = 1, 2, 3, . . . ).

By Theorem 3.8,

Xn ∗ δk → X ∗ δk as n→∞ in
(
Sβ
α

)′
(k = 1, 2, 3, . . . ).

By Lemma 2.7 and Theorem 3.7 and by the property (iii) of T (which can be
easily verified), we have X̂nδ̂k = (Xn ∗ δk )̂ , X̂δ̂k = (X ∗ δk )̂ ∈ G′ (n, k ∈ N)
and

(Xn ∗ δk )̂ → (X ∗ δk )̂ as n→∞ in G′ (k ∈ N)

or that
X̂nδ̂k → X̂δ̂k as n→∞ in G′ (k ∈ N).

Thus X̂n
δ→ X̂ as n→∞ in B(G′,Δ′). Hence T is continuous.

T−1 is continuous: Let X̂n
δ→ X̂ as n → ∞ in B(G′,Δ′) where Xn, X ∈

B(G,Δ). Then there exists a delta sequence (ε̂k) ∈ Δ′ such that X̂nε̂k, X̂ε̂k ∈
G′ (n, k ∈ N) such that

X̂nε̂k → X̂ε̂k as n→∞ in G′ (k ∈ N).

By Theorem 3.7 and by the property (iii) of T , we have

(Xn ∗ εk), (X ∗ εk) ∈
(
Sβ
α

)′
and

Xn ∗ εk → X ∗ εk as n→∞ in
(
Sβ
α

)′
(k ∈ N).

By Theorem 3.9, we have

Xn ∗ εk ∗ εk → X ∗ εk ∗ εk as n→∞ in G (k ∈ N).

Thus there exists a delta sequence (εk ∗ εk) ∈ Δ such that

Xn ∗ εk ∗ εk, X ∗ εk ∗ εk ∈ G (n, k ∈ N)

and
Xn ∗ εk ∗ εk → X ∗ εk ∗ εk as n→∞ in G (k ∈ N).

Hence Xn
δ→ X as n→∞ in B(G,Δ).

The remaining properties follow easily from the definitions. We prefer to
omit the details. This completes the proof. �
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