ANNALES

UNIVERSITATIS MARIAE CURIE-SKもODOWSKA LUBLIN - POLONIA

VOL. LXIX, NO. 1, 2015
SECTIO A
91-108

MARIUSZ PLASZCZYK

The natural transformations between r-th order prolongation of tangent and cotangent bundles over Riemannian manifolds

Abstract

If (M, g) is a Riemannian manifold then there is the well-known base preserving vector bundle isomorphism $T M \rightarrow T^{*} M$ given by $v \mapsto g(v,-)$ between the tangent $T M$ and the cotangent $T^{*} M$ bundles of M. In the present note first we generalize this isomorphism to the one $J^{r} T M \rightarrow J^{r} T^{*} M$ between the r-th order prolongation $J^{r} T M$ of tangent $T M$ and the r-th order prolongation $J^{r} T^{*} M$ of cotangent $T^{*} M$ bundles of M. Further we describe all base preserving vector bundle maps $D_{M}(g): J^{r} T M \rightarrow J^{r} T^{*} M$ depending on a Riemannian metric g in terms of natural (in g) tensor fields on M.

1. Introduction. All manifolds are smooth, Hausdorff, finite dimensional and without boundaries. Maps are assumed to be smooth, i.e. of class C^{∞}. Let $\mathcal{M} f_{m}$ denote category of m-dimensional manifolds and their embeddings.

From the general theory it is well known that the tangent $T M$ and the cotangent $T^{*} M$ bundles of M are not canonically isomorphic. However, if g is a Riemannian metric on a manifold M, there is the base preserving vector bundle isomorphism $i_{g}: T M \rightarrow T^{*} M$ given by $i_{g}(v)=g(v,-), v \in$ $T_{x} M, x \in M$.

In the second section of the present note we give necessary definitions.

[^0]In the third section first we generalize the isomorphism $i_{g}: T M \rightarrow T^{*} M$ depending on g to a base preserving vector bundle isomorphism $J^{r} i_{g}: J^{r} T M$ $\rightarrow J^{r} T^{*} M$ canonically depending on g between the r-th order prolongation $J^{r} T M$ of tangent $T M$ and the r-th order prolongation $J^{r} T^{*} M$ of cotangent $T^{*} M$ bundles of M. Next we construct another more advanced base preserving vector bundle isomorphism $i_{g}^{<r>}: J^{r} T M \rightarrow J^{r} T^{*} M$ canonically depending on g.

In the fourth section we consider the problem of describing all $\mathcal{M} f_{m^{-}}$ natural operators $D:$ Riem $\rightsquigarrow \operatorname{Hom}\left(J^{r} T, J^{r} T^{*}\right)$ transforming Riemannian metrics g on m-dimensional manifolds M into base preserving vector bundle maps $D_{M}(g): J^{r} T M \rightarrow J^{r} T^{*} M$. Our studies lead to the reduction of this problem to the one of describing all $\mathcal{M} f_{m}$-natural operators t : Riem \rightsquigarrow $T^{*} \otimes S^{l} T \otimes T^{*} \otimes S^{k} T^{*}$ (for $l, k=1, \ldots, r$) sending Riemannian metrics g on M into tensor fields $t_{M}(g)$ of types $T^{*} \otimes S^{l} T \otimes T^{*} \otimes S^{k} T^{*}$.
2. Definitions. Now we give some necessary definitions.

Definition 1. The r-th order prolongation of tangent bundle is a functor $J^{r} T: \mathcal{M} f_{m} \rightarrow \mathcal{V B}$ sending any m-manifold M into $J^{r} T M$ and any embedding $\varphi: M_{1} \rightarrow M_{2}$ of two manifolds into $J^{r} T \varphi: J^{r} T M_{1} \rightarrow J^{r} T M_{2}$ given by $J^{r} T \varphi\left(j_{x}^{r} X\right)=j_{\varphi(x)}^{r} \varphi_{*} X$, where $X \in \mathcal{X}\left(M_{1}\right)$ and $\varphi_{*} X=T \varphi \circ X \circ \varphi^{-1}$ is the image of a vector field X by φ.

Definition 2. The r-th order prolongation of cotangent bundle is a functor $J^{r} T^{*}: \mathcal{M} f_{m} \rightarrow \mathcal{V B}$ sending any m-manifold M into $J^{r} T^{*} M$ and any embedding $\varphi: M_{1} \rightarrow M_{2}$ of two manifolds into

$$
J^{r} T^{*} \varphi: J^{r} T^{*} M_{1} \rightarrow J^{r} T^{*} M_{2}
$$

given by $J^{r} T^{*} \varphi:=J^{r}\left(T \varphi^{-1}\right)^{*}$.
Definition 3. The dual bundle of the r-th order prolongation of tangent bundle is a functor $\left(J^{r} T\right)^{*}: \mathcal{M} f_{m} \rightarrow \mathcal{V B}$ sending any m-manifold M into $\left(J^{r} T\right)^{*} M:=\left(J^{r} T M\right)^{*}$ and any embedding $\varphi: M_{1} \rightarrow M_{2}$ of two manifolds into

$$
\left(J^{r} T\right)^{*} \varphi:\left(J^{r} T\right)^{*} M_{1} \rightarrow\left(J^{r} T\right)^{*} M_{2}
$$

given by $\left(J^{r} T\right)^{*} \varphi:=\left(J^{r} T \varphi^{-1}\right)^{*}$.
Definition 4. The dual bundle of the r-th order prolongation of cotangent bundle is a functor $\left(J^{r} T^{*}\right)^{*}: \mathcal{M} f_{m} \rightarrow \mathcal{V B}$ sending any m-manifold M into $\left(J^{r} T^{*}\right)^{*} M:=\left(J^{r} T^{*} M\right)^{*}$ and any embedding $\varphi: M_{1} \rightarrow M_{2}$ of two manifolds into

$$
\left(J^{r} T^{*}\right)^{*} \varphi:\left(J^{r} T^{*}\right)^{*} M_{1} \rightarrow\left(J^{r} T^{*}\right)^{*} M_{2}
$$

given by $\left(J^{r} T^{*}\right)^{*} \varphi:=\left(J^{r} T^{*} \varphi^{-1}\right)^{*}$.
The general concept of natural operators can be found in [4]. In particular, we have the following definitions.

Definition 5. An $\mathcal{M} f_{m}$-natural operator $\operatorname{D:~Riem~} \rightsquigarrow \operatorname{Hom}\left(J^{r} T, J^{r} T^{*}\right)$ transforming Riemannian metrics g on m-dimensional manifolds M into base preserving vector bundle maps $D_{M}(g): J^{r} T M \rightarrow J^{r} T^{*} M$ is a system $D=\left\{D_{M}\right\}_{M \in o b j\left(\mathcal{M} f_{m}\right)}$ of regular operators

$$
D_{M}: \operatorname{Riem}(M) \rightarrow \operatorname{Hom}_{M}\left(J^{r} T M, J^{r} T^{*} M\right)
$$

satisfying the $\mathcal{M} f_{m}$-invariance condition, where $\operatorname{Hom}_{M}\left(J^{r} T M, J^{r} T^{*} M\right)$ is the set of all vector bundle maps $J^{r} T M \rightarrow J^{r} T^{*} M$ covering the identity map $i d_{M}$ of M.

The $\mathcal{M} f_{m}$-invariance condition of D is following: for any $g_{1} \in \operatorname{Riem}\left(M_{1}\right)$ and $g_{2} \in \operatorname{Riem}\left(M_{2}\right)$ if g_{1} and g_{2} are φ-related by an embedding $\varphi: M_{1} \rightarrow$ M_{2} of m-manifolds (i.e. φ is $\left(g_{1}, g_{2}\right)$-isomorphism) then $D_{M_{1}}\left(g_{1}\right)$ and $D_{M_{2}}\left(g_{2}\right)$ are also φ-related (i.e. $\left.D_{M_{2}}\left(g_{2}\right) \circ J^{r} T \varphi=J^{r} T^{*} \varphi \circ D_{M_{1}}\left(g_{1}\right)\right)$.

Equivalently, the above $\mathcal{M} f_{m}$-invariance means that for any $g_{1} \in$ $\operatorname{Riem}\left(M_{1}\right)$ and $g_{2} \in \operatorname{Riem}\left(M_{2}\right)$ if the diagram

commutes for an embedding $\varphi: M_{1} \rightarrow M_{2}$ (i.e. $\left(T^{*} \varphi \otimes T^{*} \varphi\right) \circ g_{1}=g_{2} \circ \varphi$) then the diagram

commutes also.
We say that operator D_{M} is regular if it transforms smoothly parameterized families of Riemannian metrics into smoothly parameterized ones of vector bundle maps.

Similarly, we can define the following concepts:

- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T, J^{r} T\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T,\left(J^{r} T\right)^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T,\left(J^{r} T^{*}\right)^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T^{*}, J^{r} T\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T^{*}, J^{r} T^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T^{*},\left(J^{r} T\right)^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T^{*},\left(J^{r} T^{*}\right)^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T\right)^{*}, J^{r} T\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T\right)^{*}, J^{r} T^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T\right)^{*},\left(J^{r} T\right)^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T\right)^{*},\left(J^{r} T^{*}\right)^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T^{*}\right)^{*}, J^{r} T\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T^{*}\right)^{*}, J^{r} T^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T^{*}\right)^{*},\left(J^{r} T\right)^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T^{*}\right)^{*},\left(J^{r} T^{*}\right)^{*}\right)$.

Now we have the following definition.
Definition 6. An $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T \otimes S^{l} T^{*}, T^{*} \otimes S^{k} T^{*}\right)$ transforming Riemannian metrics g on m-dimensional manifolds M into base preserving vector bundle maps $A_{M}(g): T M \otimes S^{l} T^{*} M \rightarrow T^{*} M \otimes S^{k} T^{*} M$ is a system $A=\left\{A_{M}\right\}_{M \in o b j\left(\mathcal{M} f_{m}\right)}$ of regular operators $A_{M}: \operatorname{Riem}(M) \rightarrow$ $C^{\infty}\left(T M \otimes S^{l} T^{*} M, T^{*} M \otimes S^{k} T^{*} M\right)$ satisfying the $\mathcal{M} f_{m}$-invariance condition, where $C^{\infty}\left(T M \otimes S^{l} T^{*} M, T^{*} M \otimes S^{k} T^{*} M\right)$ is the set of all vector bundle maps $T M \otimes S^{l} T^{*} M \rightarrow T^{*} M \otimes S^{k} T^{*} M$ covering the identity map $i d_{M}$ of M.

The $\mathcal{M} f_{m}$-invariance condition of A is following : for any $g_{1} \in \operatorname{Riem}\left(M_{1}\right)$ and $g_{2} \in \operatorname{Riem}\left(M_{2}\right)$ if g_{1} and g_{2} are φ-related by an embedding $\varphi: M_{1} \rightarrow$ M_{2} of m-manifolds (i.e. $\left.\left(T^{*} \varphi \otimes T^{*} \varphi\right) \circ g_{1}=g_{2} \circ \varphi\right)$ then $A_{M_{1}}\left(g_{1}\right)$ and $A_{M_{2}}\left(g_{2}\right)$ are also φ-related (i.e. $\left.A_{M_{2}}\left(g_{2}\right) \circ\left(T \varphi \otimes S^{l} T^{*} \varphi\right)=\left(T^{*} \varphi \otimes S^{k} T^{*} \varphi\right) \circ A_{M_{1}}\left(g_{1}\right)\right)$.

Equivalently, the above $\mathcal{M} f_{m}$-invariance means that for any $g_{1} \in$ $\operatorname{Riem}\left(M_{1}\right)$ and $g_{2} \in \operatorname{Riem}\left(M_{2}\right)$ if the diagram (1) commutes for an embedding $\varphi: M_{1} \rightarrow M_{2}$ then the diagram

commutes also.
The regularity means almost the same as in Definition 5.
Similarly, we can define the following concepts:

- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T \otimes S^{l} T, T \otimes S^{k} T\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T^{*} \otimes S^{l} T, T \otimes S^{k} T\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T \otimes S^{l} T^{*}, T \otimes S^{k} T\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T \otimes S^{l} T, T^{*} \otimes S^{k} T\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T \otimes S^{l} T, T \otimes S^{k} T^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T^{*} \otimes S^{l} T^{*}, T \otimes S^{k} T\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T^{*} \otimes S^{l} T, T^{*} \otimes S^{k} T\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T^{*} \otimes S^{l} T, T \otimes S^{k} T^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T \otimes S^{l} T^{*}, T^{*} \otimes S^{k} T\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T \otimes S^{l} T^{*}, T \otimes S^{k} T^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T \otimes S^{l} T, T^{*} \otimes S^{k} T^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T^{*} \otimes S^{l} T^{*}, T^{*} \otimes S^{k} T\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T^{*} \otimes S^{l} T^{*}, T \otimes S^{k} T^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T^{*} \otimes S^{l} T, T^{*} \otimes S^{k} T^{*}\right)$,
- an $\mathcal{M} f_{m}$-natural operator $A: \operatorname{Riem} \rightsquigarrow\left(T^{*} \otimes S^{l} T^{*}, T^{*} \otimes S^{k} T^{*}\right)$.

Next we have an important general definition of natural tensor.
Definition 7. An $\mathcal{M} f_{m}$-natural operator (natural tensor) t : Riem $\rightsquigarrow \bigotimes^{p} T$ $\otimes \bigotimes^{q} T^{*}$ transforming Riemannian metrics g on m-dimensional manifolds M into tensor fields of type (p, q) on M is a system $t=\left\{t_{M}\right\}_{M \in o b j\left(\mathcal{M} f_{m}\right)}$ of regular operators $t_{M}: \operatorname{Riem}(M) \rightarrow \mathcal{T}^{(p, q)}(M)$ satisfying the $\mathcal{M} f_{m}$-invariance condition, where $\mathcal{T}^{(p, q)}(M)$ is the set of tensor fields of type (p, q) on M.

The $\mathcal{M} f_{m}$-invariance condition of t is following : for any $g_{1} \in \operatorname{Riem}\left(M_{1}\right)$ and $g_{2} \in \operatorname{Riem}\left(M_{2}\right)$ if g_{1} and g_{2} are φ-related by an embedding $\varphi: M_{1} \rightarrow$ M_{2} of m-manifolds (i.e. $\left.\left(T^{*} \varphi \otimes T^{*} \varphi\right) \circ g_{1}=g_{2} \circ \varphi\right)$ then $t_{M_{1}}\left(g_{1}\right)$ and $t_{M_{2}}\left(g_{2}\right)$ are also φ-related (i.e. $\left.t_{M_{2}}\left(g_{2}\right) \circ \varphi=\left(\bigotimes^{p} T \varphi \otimes \bigotimes^{q} T^{*} \varphi\right) \circ t_{M_{1}}\left(g_{1}\right)\right)$.

Equivalently, the above $\mathcal{M} f_{m}$-invariance means that for any $g_{1} \in$ $\operatorname{Riem}\left(M_{1}\right)$ and $g_{2} \in \operatorname{Riem}\left(M_{2}\right)$ if the diagram (1) commutes for an embedding $\varphi: M_{1} \rightarrow M_{2}$, then the diagram

commutes also.
We say that operator t_{M} is regular if it transforms smoothly parametrized families of Riemannian metrics into smoothly parametrized ones of tensor fields.

Now we have a definition of a special kind of natural tensor.

Definition 8. An $\mathcal{M} f_{m}$-natural operator (natural tensor) t : Riem $\rightsquigarrow T^{*} \otimes$ $S^{l} T \otimes T^{*} \otimes S^{k} T^{*}$ transforming Riemannian metrics g on m-dimensional manifolds M into tensor fields of type $T^{*} \otimes S^{l} T \otimes T^{*} \otimes S^{k} T^{*}$ on M is a system $t=\left\{t_{M}\right\}_{M \in o b j\left(\mathcal{M} f_{m}\right)}$ of regular operators $t_{M}: \operatorname{Riem}(M) \rightarrow C^{\infty}\left(T^{*} M \otimes\right.$ $\left.S^{l} T M \otimes T^{*} M \otimes S^{k} T^{*} M\right)$ satisfying the $\mathcal{M} f_{m}$-invariance condition, where $C^{\infty}\left(T^{*} M \otimes S^{l} T M \otimes T^{*} M \otimes S^{k} T^{*} M\right)$ is the set of all tensor fields of type $T^{*} \otimes S^{l} T \otimes T^{*} \otimes S^{k} T^{*}$ on M.

The $\mathcal{M} f_{m}$-invariance condition of t is following: for any $g_{1} \in \operatorname{Riem}\left(M_{1}\right)$ and $g_{2} \in \operatorname{Riem}\left(M_{2}\right)$ if g_{1} and g_{2} are φ-related by an embedding $\varphi: M_{1} \rightarrow$ M_{2} of m-manifolds (i.e. $\left(T^{*} \varphi \otimes T^{*} \varphi\right) \circ g_{1}=g_{2} \circ \varphi$), then $t_{M_{1}}\left(g_{1}\right)$ and $t_{M_{2}}\left(g_{2}\right)$ are also φ-related (i.e. $\left.t_{M_{2}}\left(g_{2}\right) \circ \varphi=\left(T^{*} \varphi \otimes S^{l} T \varphi \otimes T^{*} \varphi \otimes S^{k} T^{*} \varphi\right) \circ t_{M_{1}}\left(g_{1}\right)\right)$.

Equivalently, the above $\mathcal{M} f_{m}$-invariance means that for any $g_{1} \in$ $\operatorname{Riem}\left(M_{1}\right)$ and $g_{2} \in \operatorname{Riem}\left(M_{2}\right)$ if the diagram (1) commutes for an embedding $\varphi: M_{1} \rightarrow M_{2}$, then the diagram

commutes also, where $\Phi=T^{*} \varphi \otimes S^{l} T \varphi \otimes T^{*} \varphi \otimes S^{k} T^{*} \varphi$.
The regularity means almost the same as in Definition 7.
Similarly, we can define the following concepts:

- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t: \operatorname{Riem} \rightsquigarrow T \otimes S^{l} T \otimes$ $T \otimes S^{k} T$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t: \operatorname{Riem} \rightsquigarrow T^{*} \otimes S^{l} T \otimes$ $T \otimes S^{k} T$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t:$ Riem $\rightsquigarrow T \otimes S^{l} T^{*} \otimes$ $T \otimes S^{k} T$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t:$ Riem $\rightsquigarrow T \otimes S^{l} T \otimes$ $T^{*} \otimes S^{k} T$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t:$ Riem $\rightsquigarrow T \otimes S^{l} T \otimes$ $T \otimes S^{k} T^{*}$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t:$ Riem $\rightsquigarrow T^{*} \otimes S^{l} T^{*} \otimes$ $T \otimes S^{k} T$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t: R i e m \rightsquigarrow T^{*} \otimes S^{l} T \otimes$ $T^{*} \otimes S^{k} T$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t: R i e m \rightsquigarrow T^{*} \otimes S^{l} T \otimes$ $T \otimes S^{k} T^{*}$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t:$ Riem $\rightsquigarrow T \otimes S^{l} T^{*} \otimes$ $T^{*} \otimes S^{k} T$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t:$ Riem $\rightsquigarrow T \otimes S^{l} T^{*} \otimes$ $T \otimes S^{k} T^{*}$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t:$ Riem $\rightsquigarrow T \otimes S^{l} T \otimes$ $T^{*} \otimes S^{k} T^{*}$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t: \operatorname{Riem} \rightsquigarrow T^{*} \otimes S^{l} T^{*} \otimes$ $T^{*} \otimes S^{k} T$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t: \operatorname{Riem} \rightsquigarrow T^{*} \otimes S^{l} T^{*} \otimes$ $T \otimes S^{k} T^{*}$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t: \operatorname{Riem} \rightsquigarrow T \otimes S^{l} T^{*} \otimes$ $T^{*} \otimes S^{k} T^{*}$,
- an $\mathcal{M} f_{m}$-natural operator (natural tensor) $t: \operatorname{Riem} \rightsquigarrow T^{*} \otimes S^{l} T^{*} \otimes$ $T^{*} \otimes S^{k} T^{*}$.

In the third section we present also explicit examples of $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T, J^{r} T^{*}\right)$.

A full description of all polynomial natural tensors t : Riem $\rightsquigarrow \bigotimes^{p} T \otimes$ $\bigotimes^{q} T^{*}$ transforming Riemannian metrics on m-manifolds into tensor fields of types (p, q) can be found in [1]. This description is following. Each covariant derivative of the curvature $\mathcal{R}(g) \in \mathcal{T}^{(0,4)}(M)$ of a Riemannian metric g is a natural tensor and the metric g is also a natural tensor. Further all the natural tensors t : Riem $\rightsquigarrow \bigotimes^{p} T \otimes \bigotimes^{q} T^{*}$ can be obtained by a procedure:
(a) every tensor multiplication of two natural tensors give a new natural tensor,
(b) every contraction on one covariant and one contravariant entry of a natural tensor give a new natural tensor,
(c) we can tensorize any natural tensor with a metric independent natural tensor,
(d) we can permute any number of entries in the tensor product,
(e) we can repeat these steps,
(f) we can take linear combinations.

Furthermore, if we take respective type natural tensors and apply respective symmetrization, then we can produce many natural tensors t : Riem \rightsquigarrow $T^{*} \otimes S^{l} T \otimes T^{*} \otimes S^{k} T^{*}$.

3. Constructions.

Example 1. Let (M, g) be a Riemannian manifold. Then we have a base preserving vector bundle isomorphism $i_{g}: T M \rightarrow T^{*} M$ given by

$$
i_{g}(v)=g(v,-), v \in T_{x} M, x \in M
$$

Next we can obtain a base preserving vector bundle isomorphism $J^{r} i_{g}$: $J^{r} T M \rightarrow J^{r} T^{*} M$ defined by a formula

$$
J^{r} i_{g}\left(j_{x}^{r} X\right)=j_{x}^{r}\left(i_{g} \circ X\right),
$$

where $X \in \mathcal{X}(M)$. Similarly we receive also a base preserving vector bundle isomorphism

$$
\left(J^{r} i_{g}^{-1}\right)^{*}:\left(J^{r} T M\right)^{*} \rightarrow\left(J^{r} T^{*} M\right)^{*}
$$

Because of the canonical character of the above constructions we get the following propositions.
Proposition 1. The family $A^{(r)}: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T, J^{r} T^{*}\right)$ of operators

$$
A_{M}^{(r)}: \operatorname{Riem}(M) \rightarrow \operatorname{Hom}_{M}\left(J^{r} T M, J^{r} T^{*} M\right), \quad A_{M}^{(r)}(g)=J^{r} i_{g}
$$

for all $M \in \operatorname{obj}\left(\mathcal{M} f_{m}\right)$ is an $\mathcal{M} f_{m}$-natural operator.
Proposition 2. The family $A^{[r]}:$ Riem $\rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T\right)^{*},\left(J^{r} T^{*}\right)^{*}\right)$ of operators
$A_{M}^{[r]}: \operatorname{Riem}(M) \rightarrow \operatorname{Hom}_{M}\left(\left(J^{r} T M\right)^{*},\left(J^{r} T^{*} M\right)^{*}\right), \quad A_{M}^{[r]}(g)=\left(J^{r} i_{g}^{-1}\right)^{*}$
for all $M \in \operatorname{obj}\left(\mathcal{M} f_{m}\right)$ is an $\mathcal{M} f_{m}$-natural operator.
Now we are going to present another more advanced example of an $\mathcal{M} f_{m^{-}}$ natural operator $D:$ Riem $\rightsquigarrow \operatorname{Hom}\left(J^{r} T, J^{r} T^{*}\right)$.

Recall that if g is a Riemannian tensor field on a manifold M and $x \in$ M, then there is g-normal coordinate system $\varphi:(M, x) \rightarrow\left(\mathbb{R}^{m}, 0\right)$ with centre x. If $\psi:(M, x) \rightarrow\left(\mathbb{R}^{m}, 0\right)$ is another g-normal coordinate system with centre x, then there is $A \in O(m)$ such that $\psi=A \circ \varphi$ near x. Let $I: J_{0}^{r} T \mathbb{R}^{m} \rightarrow \bigoplus_{k=1}^{r} T_{0} \mathbb{R}^{m} \otimes S^{k} T_{0}^{*} \mathbb{R}^{m}=\bigoplus_{k=0}^{r} \mathbb{R}^{m} \otimes S^{k} \mathbb{R}^{m *}$ (see [3]) and $I_{1}: J_{0}^{r} T^{*} \mathbb{R}^{m} \rightarrow \bigoplus_{k=1}^{r} T_{0}^{*} \mathbb{R}^{m} \otimes S^{k} T_{0}^{*} \mathbb{R}^{m}=\bigoplus_{k=0}^{r} \mathbb{R}^{m *} \otimes S^{k} \mathbb{R}^{m *}$ (see [7]) be the standard $O(m)$-invariant vector space isomorphisms.

We have the following important proposition.
Proposition 3. Let g be a Riemannian tensor field on a manifold M. Then there are (canonical in g) vector bundle isomorphisms

$$
\begin{aligned}
& I_{g}: J^{r} T M \rightarrow \bigoplus_{k=0}^{r} T M \otimes S^{k} T^{*} M, \\
& J_{g}: J^{r} T^{*} M \rightarrow \bigoplus_{k=0}^{r} T^{*} M \otimes S^{k} T^{*} M, \\
& \left(I_{g}^{-1}\right)^{*}:\left(J^{r} T M\right)^{*} \rightarrow\left(\bigoplus_{k=0}^{r} T M \otimes S^{k} T^{*} M\right)^{*} \cong \bigoplus_{k=0}^{r} T^{*} M \otimes S^{k} T M, \\
& \left(J_{g}^{-1}\right)^{*}:\left(J^{r} T^{*} M\right)^{*} \rightarrow\left(\bigoplus_{k=0}^{r} T^{*} M \otimes S^{k} T^{*} M\right)^{*} \cong \bigoplus_{k=0}^{r} T M \otimes S^{k} T M .
\end{aligned}
$$

Proof. Let $v=j_{x}^{r} X \in J_{x}^{r} T M$, where $X \in \mathcal{X}(M), x \in M$. Let $\varphi:(M, x) \rightarrow$ $\left(\mathbb{R}^{m}, 0\right)$ be a g-normal coordinate system with centre x. We define

$$
I_{g}(v):=I_{g}^{\varphi}(v)=\left(\bigoplus_{k=0}^{r} T \varphi^{-1} \otimes S^{k} T^{*} \varphi^{-1}\right) \circ I \circ J^{r} T \varphi(v) .
$$

If $\psi:(M, x) \rightarrow\left(\mathbb{R}^{m}, 0\right)$ is another g-normal coordinate system with centre x, then $\psi=A \circ \varphi$ (near x) for some $A \in O(m)$. The $O(m)$-invariance of I means that

$$
\begin{equation*}
I \circ J^{r} T A=\left(\bigoplus_{k=0}^{r} T_{0} A \otimes S^{k} T_{0}^{*} A\right) \circ I . \tag{2}
\end{equation*}
$$

Hence we deduce that

$$
\begin{aligned}
& I_{g}^{\psi}(v)=\left(\bigoplus_{k=0}^{r} T \psi^{-1} \otimes S^{k} T^{*} \psi^{-1}\right) \circ I \circ J^{r} T \psi(v) \\
& =\bigoplus_{k=0}^{r}\left(T(A \circ \varphi)^{-1} \otimes S^{k} T^{*}(A \circ \varphi)^{-1}\right) \circ I \circ J^{r} T(A \circ \varphi)(v) \\
& =\bigoplus_{k=0}^{r}\left(\left(T \varphi^{-1} \circ T A^{-1}\right) \otimes S^{k} T^{*}\left(\varphi^{-1} \circ A^{-1}\right)\right) \circ I \circ\left(J^{r} T A \circ J^{r} T \varphi\right)(v) \\
& =\bigoplus_{k=0}^{r}\left(\left(T \varphi^{-1} \circ T A^{-1}\right) \otimes S^{k} T^{*}\left(\varphi^{-1} \circ A^{-1}\right)\right) \circ\left(I \circ J^{r} T A\right) \circ J^{r} T \varphi(v)=: L .
\end{aligned}
$$

Now using (2), we receive

$$
\begin{aligned}
L & =\bigoplus_{k=0}^{r}\left(\left(T \varphi^{-1} \circ T A^{-1}\right) \otimes S^{k} T^{*}\left(\varphi^{-1} \circ A^{-1}\right)\right) \circ\left(\bigoplus_{k=0}^{r} T A \otimes S^{k} T^{*} A\right) \circ I \circ J^{r} T \varphi(v) \\
& =\bigoplus_{k=0}^{r}\left[\left(\left(T \varphi^{-1} \circ T A^{-1}\right) \circ T A\right) \otimes\left(S^{k} T^{*}\left(\varphi^{-1} \circ A^{-1}\right) \circ S^{k} T^{*} A\right)\right] \circ I \circ J^{r} T \varphi(v) \\
& =\bigoplus_{k=0}^{r}\left(\left(T \varphi^{-1} \circ T A^{-1} \circ T A\right) \otimes S^{k} T^{*}\left(\varphi^{-1} \circ A^{-1} \circ A\right)\right) \circ I \circ J^{r} T \varphi(v) \\
& =\bigoplus_{k=0}^{r}\left(T \varphi^{-1} \otimes S^{k} T^{*} \varphi^{-1}\right) \circ I \circ J^{r} T \varphi(v)=I_{g}^{\varphi}(v) .
\end{aligned}
$$

Therefore, the definition of $I_{g}(v)$ is independent of the choice of φ. So, isomorphism $I_{g}: J^{r} T M \rightarrow \bigoplus_{k=0}^{r} T M \otimes S^{k} T^{*} M$ is well defined.

Similarly, we put

$$
J_{g}(v):=J_{g}^{\varphi}(v)=\left(\bigoplus_{k=0}^{r} T^{*} \varphi^{-1} \otimes S^{k} T^{*} \varphi^{-1}\right) \circ I_{1} \circ J^{r} T^{*} \varphi(v) .
$$

Using $O(m)$-invariance of I_{1} (i.e. $I_{1} \circ J^{r} T^{*} A=\left(\bigoplus_{k=0}^{r} T_{0}^{*} A \otimes S^{k} T_{0}^{*} A\right) \circ$ I_{1}) analogously as before, we show that $I_{g}^{\psi}(v)=I_{g}^{\varphi}(v)$. This proves that the definition of $J_{g}(v)$ is independent of the choice of g-normal coordinate system φ with centre x and the isomorphism $J_{g}: J^{r} T^{*} M \rightarrow \bigoplus_{k=0}^{r} T^{*} M \otimes$ $S^{k} T^{*} M$ is well defined.

Finally we obtain (canonical in g) vector bundle isomorphisms

$$
\begin{aligned}
& \left(I_{g}^{-1}\right)^{*}:\left(J^{r} T M\right)^{*} \rightarrow\left(\bigoplus_{k=0}^{r} T M \otimes S^{k} T^{*} M\right)^{*} \cong \bigoplus_{k=0}^{r} T^{*} M \otimes S^{k} T M \\
& \left(J_{g}^{-1}\right)^{*}:\left(J^{r} T^{*} M\right)^{*} \rightarrow\left(\bigoplus_{k=0}^{r} T^{*} M \otimes S^{k} T^{*} M\right)^{*} \cong \bigoplus_{k=0}^{r} T M \otimes S^{k} T M
\end{aligned}
$$

Remark 1. W. Mikulski (in [7]) has recently constructed a (canonical in $\nabla)$ vector bundle isomorphism $I_{\nabla}: J^{r} T M \rightarrow \bigoplus_{k=0}^{r} T^{*} M \otimes S^{k} T^{*} M$ for a classical linear connection ∇ on a manifold M.

Now we have further important identifications.
Example 2. Let (M, g) be a Riemannian manifold and $i_{g}: T M \rightarrow T^{*} M$ be a base preserving vector bundle isomorphism recalled in Example 1. Using the base preserving vector bundle isomorphisms I_{g} and J_{g} from Proposition 3 , we receive the following vector bundle isomorphisms

$$
\begin{aligned}
& i_{g}^{<r>}:=J_{g}^{-1} \circ\left(\bigoplus_{k=0}^{r} i_{g} \otimes S^{k} T^{*} i d_{M}\right) \circ I_{g}: J^{r} T M \rightarrow J^{r} T^{*} M, \\
& i_{g}^{[r]}:=J_{g}^{*} \circ\left(\bigoplus_{k=0}^{r} i_{g}^{-1} \otimes S^{k} T i d_{M}\right) \circ\left(I_{g}^{-1}\right)^{*}:\left(J^{r} T M\right)^{*} \rightarrow\left(J^{r} T^{*} M\right)^{*} .
\end{aligned}
$$

Because of canonical character of above constructions we obtain the following propositions.
Proposition 4. The family $B^{<r>}$: Riem $\rightsquigarrow \operatorname{Hom}\left(J^{r} T, J^{r} T^{*}\right)$ of operators

$$
B_{M}^{<r>}: \operatorname{Riem}(M) \rightarrow \operatorname{Hom}_{M}\left(J^{r} T M, J^{r} T^{*} M\right), \quad B_{M}^{<r>}(g)=i_{g}^{<r>}
$$

for all $M \in \operatorname{obj}\left(\mathcal{M} f_{m}\right)$ is an $\mathcal{M} f_{m}$-natural operator.
Proposition 5. The family $B^{[r]}: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T\right)^{*},\left(J^{r} T^{*}\right)^{*}\right)$ of operators

$$
B_{M}^{[r]}: \operatorname{Riem}(M) \rightarrow \operatorname{Hom}_{M}\left(\left(J^{r} T M\right)^{*},\left(J^{r} T^{*} M\right)^{*}\right), \quad B_{M}^{[r]}(g)=i_{g}^{[r]}
$$

for all $M \in \operatorname{obj}\left(\mathcal{M} f_{m}\right)$ is an $\mathcal{M} f_{m}$-natural operator.
Example 3. Let (M, g) be a Riemannian manifold. In an article [5] J. Kurek and W. Mikulski constructed a base preserving vector bundle isomorphism

$$
i_{g}^{(r)}: \bigoplus_{k=1}^{r} S^{k} T M \rightarrow \bigoplus_{k=1}^{r} S^{k} T^{*} M
$$

given by

$$
i_{g}^{(r)}\left(v_{1} \odot \cdots \odot v_{k}\right)=i_{g}\left(v_{1}\right) \odot \cdots \odot i_{g}\left(v_{k}\right)
$$

Now using this isomorphism, we get a base preserving vector bundle isomorphism

$$
\begin{aligned}
I_{g}^{(r)} & : T M \otimes \bigoplus_{k=0}^{r} S^{k} T^{*} M \cong \bigoplus_{k=0}^{r} T M \otimes S^{k} T^{*} M \\
& \rightarrow T^{*} M \otimes \bigoplus_{k=0}^{r} S^{k} T M \cong \bigoplus_{k=0}^{r} T^{*} M \otimes S^{k} T M
\end{aligned}
$$

defined by a formula

$$
I_{g}^{(r)}=i_{g} \otimes\left(i_{g}^{(r)}\right)^{-1}
$$

Similarly, we construct another base preserving vector bundle isomorphisms
$\tilde{I}_{g}^{(r)}: \bigoplus_{k=0}^{r} T M \otimes S^{k} T^{*} M \rightarrow \bigoplus_{k=0}^{r} T M \otimes S^{k} T M, \quad \tilde{I}_{g}^{(r)}=i d_{T M} \otimes\left(i_{g}^{(r)}\right)^{-1}$,
$\tilde{\tilde{I}} g g=\bigoplus_{k=0}^{r} T^{*} M \otimes S^{k} T^{*} M \rightarrow \bigoplus_{k=0}^{r} T M \otimes S^{k} T M, \quad \tilde{\tilde{I}}_{g}^{(r)}=i_{g}^{-1} \otimes\left(i_{g}^{(r)}\right)^{-1}$,
$\hat{I}_{g}^{(r)}: \bigoplus_{k=0}^{r} T^{*} M \otimes S^{k} T^{*} M \rightarrow \bigoplus_{k=0}^{r} T^{*} M \otimes S^{k} T M, \quad \hat{I}_{g}^{(r)}=i d_{T^{*} M} \otimes\left(i_{g}^{(r)}\right)^{-1}$.
Thus we receive a base preserving vector bundle isomorphism

$$
I_{g}^{<r>}: J^{r} T M \rightarrow\left(J^{r} T M\right)^{*}
$$

given by

$$
I_{g}^{<r>}=I_{g}^{*} \circ I_{g}^{(r)} \circ I_{g} .
$$

Similarly, we construct another base preserving vector bundle isomorphisms

$$
\begin{array}{cl}
\tilde{I}_{g}^{<r>}: J^{r} T M \rightarrow\left(J^{r} T^{*} M\right)^{*}, & \tilde{I}_{g}^{<r>}=J_{g}^{*} \circ \tilde{I}_{g}^{(r)} \circ I_{g}, \\
I_{g}^{[r]}: J^{r} T^{*} M \rightarrow\left(J^{r} T M\right)^{*}, & I_{g}^{[r]}=I_{g}^{*} \circ \hat{I}_{g}^{(r)} \circ J_{g}, \\
\tilde{I}_{g}^{[r]}: J^{r} T^{*} M \rightarrow\left(J^{r} T^{*} M\right)^{*}, & \tilde{I}_{g}^{[r]}=J_{g}^{*} \circ \tilde{\tilde{I}}_{g}^{(r)} \circ J_{g} .
\end{array}
$$

Using the base preserving vector bundle isomorphism $J^{r} i_{g}: J^{r} T M \rightarrow$ $J^{r} T^{*} M$ constructed in Example 1, we obtain also the following vector bundle isomorphisms

$$
\begin{aligned}
J_{g}^{<r>} & =\left(J^{r} i_{g}^{-1}\right)^{*} \circ I_{g}^{<r>}: J^{r} T M \rightarrow\left(J^{r} T^{*} M\right)^{*}, \\
\tilde{J}_{g}^{<r>} & =\left(J^{r} i_{g}\right)^{*} \circ \tilde{I}_{g}^{<r>}: J^{r} T M \rightarrow\left(J^{r} T M\right)^{*}, \\
J_{g}^{[r]} & =\left(J^{r} i_{g}^{-1}\right)^{*} \circ I_{g}^{[r]}: J^{r} T^{*} M \rightarrow\left(J^{r} T^{*} M\right)^{*}, \\
\tilde{J}_{g}^{[r]} & =\left(J^{r} i_{g}\right)^{*} \circ \tilde{I}_{g}^{[r]}: J^{r} T^{*} M \rightarrow\left(J^{r} T M\right)^{*} .
\end{aligned}
$$

Because of canonical character of the above constructions we get the following propositions.
Proposition 6. The family $C^{<r>}:$ Riem $\rightsquigarrow \operatorname{Hom}\left(J^{r} T,\left(J^{r} T\right)^{*}\right)$ of operators

$$
C_{M}^{<r>}: \operatorname{Riem}(M) \rightarrow \operatorname{Hom}_{M}\left(J^{r} T M,\left(J^{r} T M\right)^{*}\right), \quad C_{M}^{<r>}(g)=I_{g}^{<r>}
$$

for all $M \in \operatorname{obj}\left(\mathcal{M} f_{m}\right)$ is an $\mathcal{M} f_{m}$-natural operator.
Proposition 7. The family $\tilde{C}^{<r>}: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T,\left(J^{r} T^{*}\right)^{*}\right)$ of operators

$$
\tilde{C}_{M}^{<r>}: \operatorname{Riem}(M) \rightarrow \operatorname{Hom}_{M}\left(J^{r} T M,\left(J^{r} T^{*} M\right)^{*}\right), \quad \tilde{C}_{M}^{<r>}(g)=\tilde{I}_{g}^{<r>}
$$

for all $M \in \operatorname{obj}\left(\mathcal{M} f_{m}\right)$ is an $\mathcal{M} f_{m}$-natural operator.
Proposition 8. The family $C^{[r]}: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T^{*},\left(J^{r} T\right)^{*}\right)$ of operators

$$
C_{M}^{[r]}: \operatorname{Riem}(M) \rightarrow \operatorname{Hom}_{M}\left(J^{r} T^{*} M,\left(J^{r} T M\right)^{*}\right), \quad C_{M}^{[r]}(g)=I_{g}^{[r]}
$$

for all $M \in \operatorname{obj}\left(\mathcal{M} f_{m}\right)$ is an $\mathcal{M} f_{m}$-natural operator.
Proposition 9. The family $\tilde{C}^{[r]}: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T^{*},\left(J^{r} T^{*}\right)^{*}\right)$ of operators

$$
\tilde{C}_{M}^{[r]}: \operatorname{Riem}(M) \rightarrow \operatorname{Hom}_{M}\left(J^{r} T^{*} M,\left(J^{r} T^{*} M\right)^{*}\right), \quad \tilde{C}_{M}^{[r]}(g)=\tilde{I}_{g}^{[r]}
$$

for all $M \in \operatorname{obj}\left(\mathcal{M} f_{m}\right)$ is an $\mathcal{M} f_{m}$-natural operator.
Proposition 10. The family $D^{<r>}:$ Riem $\rightsquigarrow \operatorname{Hom}\left(J^{r} T,\left(J^{r} T^{*}\right)^{*}\right)$ of operators

$$
D_{M}^{<r>}: \operatorname{Riem}(M) \rightarrow \operatorname{Hom}_{M}\left(J^{r} T M,\left(J^{r} T^{*} M\right)^{*}\right), \quad D_{M}^{<r>}(g)=J_{g}^{<r>}
$$

for all $M \in \operatorname{obj}\left(\mathcal{M} f_{m}\right)$ is an $\mathcal{M} f_{m}$-natural operator.
Proposition 11. The family $\tilde{D}^{<r>}: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T,\left(J^{r} T\right)^{*}\right)$ of operators

$$
\tilde{D}_{M}^{<r>}: \operatorname{Riem}(M) \rightarrow \operatorname{Hom}_{M}\left(J^{r} T M,\left(J^{r} T M\right)^{*}\right), \quad \tilde{D}_{M}^{<r>}(g)=\tilde{J}_{g}^{<r>}
$$

for all $M \in \operatorname{obj}\left(\mathcal{M} f_{m}\right)$ is an $\mathcal{M} f_{m}$-natural operator.
Proposition 12. The family $D^{[r]}: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T^{*},\left(J^{r} T^{*}\right)^{*}\right)$ of operators

$$
D_{M}^{[r]}: \operatorname{Riem}(M) \rightarrow \operatorname{Hom}_{M}\left(J^{r} T^{*} M,\left(J^{r} T^{*} M\right)^{*}\right), \quad D_{M}^{[r]}(g)=J_{g}^{[r]}
$$

for all $M \in \operatorname{obj}\left(\mathcal{M} f_{m}\right)$ is an $\mathcal{M} f_{m}$-natural operator.
Proposition 13. The family $\tilde{D}^{[r]}: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T^{*},\left(J^{r} T\right)^{*}\right)$ of operators

$$
\tilde{D}_{M}^{[r]}: \operatorname{Riem}(M) \rightarrow \operatorname{Hom}_{M}\left(J^{r} T^{*} M,\left(J^{r} T M\right)^{*}\right), \quad \tilde{D}_{M}^{[r]}(g)=\tilde{J}_{g}^{[r]}
$$

for all $M \in \operatorname{obj}\left(\mathcal{M} f_{m}\right)$ is an $\mathcal{M} f_{m}$-natural operator.
4. The main results. Let $g \in \operatorname{Riem}(M)$ be a Riemannian metric on an m manifold M. By Proposition 3 and Examples 1, 2, 3 we have identifications

$$
\begin{aligned}
J^{r} T M & =J^{r} T^{*} M=\left(J^{r} T M\right)^{*}=\left(J^{r} T^{*} M\right)^{*}=\bigoplus_{k=0}^{r} T M \otimes S^{k} T^{*} M \\
& =\bigoplus_{k=0}^{r} T^{*} M \otimes S^{k} T^{*} M=\bigoplus_{k=0}^{r} T^{*} M \otimes S^{k} T M=\bigoplus_{k=0}^{r} T M \otimes S^{k} T M
\end{aligned}
$$

modulo the base preserving vector bundle isomorphisms canonically depending on g.

Consequently, the problem of finding all $\mathcal{M} f_{m}$-natural operators $D:$ Riem $\rightsquigarrow \operatorname{Hom}\left(J^{r} T, J^{r} T^{*}\right)$ is reduced to the one of finding all systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}: \operatorname{Riem} \rightsquigarrow\left(T \otimes S^{l} T^{*}, T^{*} \otimes S^{k} T^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T M \otimes S^{l} T^{*} M \rightarrow T^{*} M \otimes S^{k} T^{*} M$, where $l, k=1, \ldots, r$ or (equivalently) our problem is reduced to the one of finding all natural tensors $t^{l, k}:$ Riem $\rightsquigarrow T^{*} \otimes S^{l} T \otimes T^{*} \otimes S^{k} T^{*}$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T^{*} \otimes S^{l} T \otimes T^{*} \otimes S^{k} T^{*}$ on M for $l, k=1, \ldots, r$.

Thus we have proved the following theorem.
Theorem 1. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T, J^{r} T^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g): J^{r} T M \rightarrow J^{r} T^{*} M$ are in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators (natural tensors) $t^{l, k}:$ Riem \rightsquigarrow $T^{*} \otimes S^{l} T \otimes T^{*} \otimes S^{k} T^{*}$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T^{*} \otimes S^{l} T \otimes T^{*} \otimes S^{k} T^{*}$ on M for $l, k=1, \ldots, r$.

Because of the isomorphism $J^{r} T M \cong J^{r} T^{*} M$ depending on g, we have the following theorem.

Theorem 2. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T, J^{r} T\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g): J^{r} T M \rightarrow J^{r} T M$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow\left(T \otimes S^{l} T^{*}, T \otimes S^{k} T^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T M \otimes S^{l} T^{*} M \rightarrow T M \otimes S^{k} T^{*} M$ for $l, k=$ $1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T^{*} \otimes S^{l} T \otimes T \otimes S^{k} T^{*}$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T^{*} \otimes S^{l} T \otimes T \otimes S^{k} T^{*}$ on M for $l, k=1, \ldots, r$.

By the same reason, we have also the following corollary.
Corollary 1. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T^{*}, J^{r} T\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving
vector bundle maps $D_{M}(g): J^{r} T^{*} M \rightarrow J^{r} T M$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow\left(T^{*} \otimes S^{l} T^{*}, T \otimes\right.$ $S^{k} T^{*}$) transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T^{*} M \otimes S^{l} T^{*} M \rightarrow T M \otimes S^{k} T^{*} M$ for $l, k=1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T \otimes S^{l} T \otimes T \otimes S^{k} T^{*}$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T \otimes S^{l} T \otimes T \otimes S^{k} T^{*}$ on M for $l, k=1, \ldots, r$.

By the same reason, we have another corollary.
Corollary 2. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T^{*}, J^{r} T^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g): J^{r} T^{*} M \rightarrow J^{r} T^{*} M$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow\left(T^{*} \otimes S^{l} T^{*}, T^{*} \otimes\right.$ $S^{k} T^{*}$) transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T^{*} M \otimes S^{l} T^{*} M \rightarrow T^{*} M \otimes S^{k} T^{*} M$ for $l, k=1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T \otimes S^{l} T \otimes T^{*} \otimes S^{k} T^{*}$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T \otimes S^{l} T \otimes T^{*} \otimes S^{k} T^{*}$ on M for $l, k=1, \ldots, r$.

Because of the isomorphisms $J^{r} T M \cong J^{r} T^{*} M \cong\left(J^{r} T M\right)^{*}$ depending on g, we have the following theorem.

Theorem 3. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T,\left(J^{r} T\right)^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g): J^{r} T M \rightarrow\left(J^{r} T M\right)^{*}$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow\left(T \otimes S^{l} T^{*}, T^{*} \otimes\right.$ $\left.S^{k} T\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T M \otimes S^{l} T^{*} M \rightarrow T^{*} M \otimes S^{k} T M$ for $l, k=1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m^{-}}$ natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T^{*} \otimes S^{l} T \otimes T^{*} \otimes S^{k} T$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T^{*} \otimes S^{l} T \otimes T^{*} \otimes S^{k} T$ on M for $l, k=1, \ldots, r$.

By the same reason, we have the following theorem.
Theorem 4. The $\mathcal{M} f_{m}$-natural operators D: Riem $\rightsquigarrow \operatorname{Hom}\left(J^{r} T^{*},\left(J^{r} T\right)^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g): J^{r} T^{*} M \rightarrow\left(J^{r} T M\right)^{*}$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}: \operatorname{Riem} \rightsquigarrow\left(T^{*} \otimes S^{l} T^{*}, T^{*} \otimes\right.$ $S^{k} T$) transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T^{*} M \otimes S^{l} T^{*} M \rightarrow T^{*} M \otimes S^{k} T M$ for
$l, k=1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m}$ natural operators (natural tensors) $t^{l, k}: R i e m ~ T \otimes S^{l} T \otimes T^{*} \otimes S^{k} T$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T \otimes S^{l} T \otimes T^{*} \otimes S^{k} T$ on M for $l, k=1, \ldots, r$.

By the same reason, we have also the following corollary.
Corollary 3. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T\right)^{*}, J^{r} T\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g):\left(J^{r} T M\right)^{*} \rightarrow J^{r} T M$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow\left(T^{*} \otimes S^{l} T, T \otimes\right.$ $\left.S^{k} T^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T^{*} M \otimes S^{l} T M \rightarrow T M \otimes S^{k} T^{*} M$ for $l, k=1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m}$ natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T \otimes S^{l} T^{*} \otimes T \otimes S^{k} T^{*}$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T \otimes S^{l} T^{*} \otimes T \otimes S^{k} T^{*}$ on M for $l, k=1, \ldots, r$.

We have also the next similar corollary.
Corollary 4. The $\mathcal{M} f_{m}$-natural operators $\operatorname{D:~Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T\right)^{*}, J^{r} T^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g):\left(J^{r} T M\right)^{*} \rightarrow J^{r} T^{*} M$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow\left(T^{*} \otimes S^{l} T, T^{*} \otimes\right.$ $S^{k} T^{*}$) transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T^{*} M \otimes S^{l} T M \rightarrow T^{*} M \otimes S^{k} T^{*} M$ for $l, k=1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m}$ natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T \otimes S^{l} T^{*} \otimes T^{*} \otimes S^{k} T^{*}$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T \otimes S^{l} T^{*} \otimes T^{*} \otimes S^{k} T^{*}$ on M for $l, k=1, \ldots, r$.

We have also another corollary.
Corollary 5. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T\right)^{*},\left(J^{r} T\right)^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g):\left(J^{r} T M\right)^{*} \rightarrow\left(J^{r} T M\right)^{*}$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow\left(T^{*} \otimes S^{l} T, T^{*} \otimes S^{k} T\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T^{*} M \otimes S^{l} T M \rightarrow T^{*} M \otimes S^{k} T M$ for $l, k=$ $1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T \otimes S^{l} T^{*} \otimes T^{*} \otimes S^{k} T$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T \otimes S^{l} T^{*} \otimes T^{*} \otimes S^{k} T$ on M for $l, k=1, \ldots, r$.

Because of the isomorphisms $J^{r} T M \cong J^{r} T^{*} M \cong\left(J^{r} T M\right)^{*} \cong\left(J^{r} T^{*} M\right)^{*}$ depending on g, we have the following theorem.

Theorem 5. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T,\left(J^{r} T^{*}\right)^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g): J^{r} T M \rightarrow\left(J^{r} T^{*} M\right)^{*}$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow\left(T \otimes S^{l} T^{*}, T \otimes S^{k} T\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T M \otimes S^{l} T^{*} M \rightarrow T M \otimes S^{k} T M$ for $l, k=1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T^{*} \otimes S^{l} T \otimes T \otimes S^{k} T$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T^{*} \otimes S^{l} T \otimes T \otimes S^{k} T$ on M for $l, k=1, \ldots, r$.

By the same reason, we have the following theorem.
Theorem 6. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(J^{r} T^{*},\left(J^{r} T^{*}\right)^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g): J^{r} T^{*} M \rightarrow\left(J^{r} T^{*} M\right)^{*}$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow ~\left(T^{*} \otimes S^{l} T^{*}, T \otimes\right.$ $\left.S^{k} T\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T^{*} M \otimes S^{l} T^{*} M \rightarrow T M \otimes S^{k} T M$ for $l, k=1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m^{-}}$ natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T \otimes S^{l} T \otimes T \otimes S^{k} T$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T \otimes S^{l} T \otimes T \otimes S^{k} T$ on M for $l, k=1, \ldots, r$.

By the same reason, we have also the following theorem.
Theorem 7. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T\right)^{*},\left(J^{r} T^{*}\right)^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g):\left(J^{r} T M\right)^{*} \rightarrow\left(J^{r} T^{*} M\right)^{*}$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow\left(T^{*} \otimes S^{l} T, T \otimes S^{k} T\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T^{*} M \otimes S^{l} T M \rightarrow T M \otimes S^{k} T M$ for $l, k=1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T \otimes S^{l} T^{*} \otimes T \otimes S^{k} T$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T \otimes S^{l} T^{*} \otimes T \otimes S^{k} T$ on M for $l, k=1, \ldots, r$.

We have also the following corollary.
Corollary 6. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T^{*}\right)^{*}, J^{r} T\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g):\left(J^{r} T^{*} M\right)^{*} \rightarrow J^{r} T M$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow\left(T \otimes S^{l} T, T \otimes S^{k} T^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T M \otimes S^{l} T M \rightarrow T M \otimes S^{k} T^{*} M$ for $l, k=1, \ldots, r$
or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T^{*} \otimes S^{l} T^{*} \otimes T \otimes S^{k} T^{*}$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T^{*} \otimes S^{l} T^{*} \otimes T \otimes S^{k} T^{*}$ on M for $l, k=1, \ldots, r$.

We have also the next corollary.
Corollary 7. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T^{*}\right)^{*}, J^{r} T^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g):\left(J^{r} T^{*} M\right)^{*} \rightarrow J^{r} T^{*} M$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow\left(T \otimes S^{l} T, T^{*} \otimes\right.$ $S^{k} T^{*}$) transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T M \otimes S^{l} T M \rightarrow T^{*} M \otimes S^{k} T^{*} M$ for $l, k=1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m^{-}}$ natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T^{*} \otimes S^{l} T^{*} \otimes T^{*} \otimes S^{k} T^{*}$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T^{*} \otimes S^{l} T^{*} \otimes T^{*} \otimes S^{k} T^{*}$ on M for $l, k=1, \ldots, r$.

We have also the similar corollary.
Corollary 8. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T^{*}\right)^{*},\left(J^{r} T\right)^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g):\left(J^{r} T^{*} M\right)^{*} \rightarrow\left(J^{r} T M\right)^{*}$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow\left(T \otimes S^{l} T, T^{*} \otimes S^{k} T\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T M \otimes S^{l} T M \rightarrow T^{*} M \otimes S^{k} T M$ for $l, k=1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T^{*} \otimes S^{l} T^{*} \otimes T^{*} \otimes S^{k} T$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T^{*} \otimes S^{l} T^{*} \otimes T^{*} \otimes S^{k} T$ on M for $l, k=1, \ldots, r$.

Finally, we have the last corollary.
Corollary 9. The $\mathcal{M} f_{m}$-natural operators $D: \operatorname{Riem} \rightsquigarrow \operatorname{Hom}\left(\left(J^{r} T^{*}\right)^{*}\right.$, $\left.\left(J^{r} T^{*}\right)^{*}\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $D_{M}(g):\left(J^{r} T^{*} M\right)^{*} \rightarrow\left(J^{r} T^{*} M\right)^{*}$ are in the bijection with systems $\left(A^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators $A^{l, k}:$ Riem $\rightsquigarrow(T \otimes$ $\left.S^{l} T, T \otimes S^{k} T\right)$ transforming Riemannian metrics g on m-manifolds M into base preserving vector bundle maps $A_{M}^{l, k}(g): T M \otimes S^{l} T M \rightarrow T M \otimes S^{k} T M$ for $l, k=1, \ldots, r$ or (equivalently) in the bijection with systems $\left(t^{l, k}\right)$ of $\mathcal{M} f_{m}$-natural operators (natural tensors) $t^{l, k}:$ Riem $\rightsquigarrow T^{*} \otimes S^{l} T^{*} \otimes T \otimes S^{k} T$ transforming Riemannian metrics g on m-manifolds M into tensor fields of types $T^{*} \otimes S^{l} T^{*} \otimes T \otimes S^{k} T$ on M for $l, k=1, \ldots, r$.

References

[1] Epstein, D. B. A., Natural tensors on Riemannian manifolds, J. Differential Geom. 10 (1975), 631-645.
[2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, Vol. I, J. WileyInterscience, New York-London, 1963.
[3] Kolář, I., Connections on higher order frame bundles and their gauge analogies, Variations, Geometry and Physics, Nova Sci. Publ., New York, 2009, 167-188.
[4] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
[5] Kurek, J., Mikulski, W. M., The natural transformations between r-tangent and rcotangent bundles over Riemannian manifolds, Ann. Univ. Mariae Curie-Skłodowska Sect. A 68 (2) (2014), 59-64.
[6] Kurek, J., Mikulski, W. M., The natural operators lifting connections to tensor powers of the cotangent bundle, Miskolc Mathematical Notes 14, No. 2 (2013), 517-524.
[7] Mikulski, W. M., Lifting connections to the r-jet prolongation of the cotangent bundle, Math. Appl. (Brno) 3 (2014), 115-124.

Mariusz Plaszczyk
Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: mariusz.piotr.plaszczyk@gmail.com

Received December 30, 2014

[^0]: 2010 Mathematics Subject Classification. 58A05, 58A20, 58A32.
 Key words and phrases. Riemannian manifold, higher order prolongation of a vector bundle, natural tensor, natural operator.

