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Pattern avoidance in partial words
over a ternary alphabet

Abstract. Blanched-Sadri and Woodhouse in 2013 have proven the conjec-
ture of Cassaigne, stating that any pattern with m distinct variables and of
length at least 2m is avoidable over a ternary alphabet and if the length is
at least 3 · 2m−1 it is avoidable over a binary alphabet. They conjectured
that similar theorems are true for partial words – sequences, in which some
characters are left “blank”. Using method of entropy compression, we obtain
the partial words version of the theorem for ternary words.

1. Introduction. Let Σ = {a, b, c, . . . } and Δ = {A,B,C, . . . } be finite
alphabets. We refer to elements of Σ as letters and to elements of Δ as
variables. A word w over some alphabet is a sequence of letters from this
alphabet, an infinite word is an infinite sequence of letters. A factor of w
is a subsequence of w consisting of consecutive letters. A prefix of w is a
factor containing the first letter of w and a suffix is a factor containing its
last letter. A pattern p is a word over Δ and a doubled pattern is a pattern
in which every variable occurs at least twice. A word w over Σ is an instance
of p if there exists a morphism h : Δ+ → Σ+ such that h(p) = w. A word w
is said to avoid p if no factor of w is an instance of p. For example, aabaac
contains an instance of ABA and abaca avoids AA.
A partial word over alphabet Σ is a sequence of characters from extended
alphabet Σ� = Σ∪{�}, an occurrence of � is called a hole. For a partial word
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w we denote the set of positions of holes as holes(w). A partial word w is an
instance of p if there exists a substitution of single letters from Σ to holes(w)
such that the resulting word is an instance of p. For example, w = a � ab
contains an instance of AAA but it avoids ABBA and holes(w) = {2}.
The avoidability index λ(p) of pattern p is the size of the smallest alphabet

Σ such that there exists an infinite word over Σ that avoids p. The partial
avoidability index λ∗(p) of pattern p is the size of the smallest alphabet Σ
such that there exists an infinite partial word W over Σ� avoiding p and
with |holes(W )| = ∞.
Blanchet-Sadri and Woodhouse [1] and independently Ochem and Pin-
lou [8] proved the following conjecture of Cassaigne [2]:

Theorem 1.1 ([2]). Let p be a pattern with exactly k distinct variables.
(1) If p has length at least 2k then λ(p) ≤ 3.
(2) If p has length at least 3 · 2k−1 then λ(p) = 2.

It was known previously that above bounds are the best possible [6].
Blanchet-Sadri and Woodhouse conjectured that for partial avoidability the
first statement remains true for doubled patterns with at least 4 variables
and the second remains true without changes. Proof of the first statement
for partial words is the main result of this paper, i.e. we will prove that if
p is a doubled pattern with k ≥ 4 variables and length at least 2k, then
λ(p) ≤ 3.

2. Tools and notation. In this section we introduce a few classical com-
binatorial concepts and results which will be used in the proof.

2.1. Analytic combinatorics. First we need several concepts of analytic
combinatorics. We send readers not familiar with this topic to an excellent
book of Flajolet and Sedgewick [3]. We say that a number sequence (ai)i∈N
is of exponential order Kn, which we abbreviate as an �� Kn iff:

lim sup
n→∞

n
√
|an| = K.

We will also use one of the basic ordinary generating functions operator,
namely SEQ. The operator corresponds to the class of objects 1 +E + 1+
E2+ . . . and represents sequences, i.e. the slots are not being permuted and
there is exactly one empty sequence. We have

SEQ(f(z)) = 1 + Σn≥1Z(En)(f(z), f(z
2), . . . , f(zn))

= 1 + Σn≥1f(z)
n =

1

1− f(z)
.

Analytic combinatorics will be used in the proof as a tool for bounding
asymptotic growth of coefficients of the generating function f(z) defined by
an equation of type f(z) = z · φ(f(z)). The following theorem will allow us
to do that:
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Theorem 2.1 (Flajolet, Sedgewick [3], Proposition IV.5). Let φ be a func-
tion analytic at 0, having non-negative Taylor coefficients such that φ(0) �=
0. Let R ≤ +∞ be the radius of convergence of the series representing φ at
0. Under the condition,

(1) lim
x→R−

xφ′(x)
φ(x)

> 1,

there is a unique solution τ ∈ (0, R) of the characteristic equation:

(2)
τφ′(τ)
φ(τ)

= 1.

Then, the formal solution y(z) of the equation y(z) = z · φ(y(z)) is analytic
at 0 and its coefficients satisfies exponential growth formula:

[zn]f(z) ��

(
1

ρ

)n

where p = τ
φ(τ) =

1
φ′(τ) .

Based on the above theorem we introduce the general method for bound-
ing the exponential order of combinatorial sequences proposed by Zydroń [9].
Let f(z) = Σ∞

i=0fiz
i be a generating function satisfying an equation f(z) =

z · φ(f(z)) where φ(y) satisfies the following conditions:
I φ(0) �= 0,
II φ(y) is analytic in 0,
III ∀n≥0 [yn]φ(y) ≥ 0,
IV limy→R− φ(y) = +∞, where R is the finite radius of convergence of
power series expansion of φ(y) at 0.

Define function z(f) = f
φ(f) – an inversion of f (calculated from the equation

defining f). Note that the condition IV implies that:

0 > lim
f→R−

z′(f) = lim
f→R−

(
1

φ(f)
− f · φ(f)′

φ(f)2

)
⇓

lim
f→R−

(
f · φ(f)′
φ(f)

)
> 1.

and hence that the condition (1) of Theorem 2.1 is satisfied. It means
that φ(y) satisfies all conditions of Theorem 2.1 so there is precisely one
solution of the equation (2) and hence also the equation z′(τ) = 0. Note
that z(0) = limf→R− z(f) = 0 and z(f) is non-negative in the interval
(0, R). Based on the above fact we deduce that z(f)’s only maximum in
(0, R) is the point τ . Moreover, from thesis of Theorem 2.1 we get that z(τ)
is a radius of convergence of f(z). Based on the above observations we are
ready to propose a general method for bounding exponential order of the
coefficients of f :
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Step 1. Express generating function f as solution of the equation f(z) =
z · φ(f(z)) where φ satisfies conditions I–IV.
Step 2. Basing on the above equation, calculate function z(f) – an inversion
of f(z).
Step 3. Find a point f0 inside the interval (0, R) where R is a radius of
convergence of φ(f) such that z(f0) > 1

K for some K.
Step 4. Basing on Theorem 2.1, deduce that radius of convergence of
the function f(z) is greater than 1

K and hence that its coefficients are of
exponential order at most Kn.
Note that K does not need to be the maximal value of z(f), which allows
us to use numerical computations in the proof.

2.2. Dyck paths. A Generalized Dyck path of type (n,m) is a path on the
square lattice with steps (1, 1) and (1,−1) from (0, 0) to (n,m) that never
falls below the x-axis. We denote the number of all generalized Dyck paths
of type (m,n) as Dm,n. Dyck paths are a standard example of structures
counted by Catalan numbers - D2n,0 is equal to Cn.

1 2 3 4 5 6 7 8 9 10

1

2

3

0

A sample generalized Dyck path of type (10, 2)

3. Proof. The proof follows the general framework of Moser–Tardosz algo-
rithmisation of Lovasz local lemma [7] adjusted for application to sequences
by Grytczuk, Kozik and Micek [4]. We will refer to this method as entropy
compression. In the proof we assume that it is not possible to construct an
infinite word over alphabet {a, b, c} avoiding pattern p and therefore there
is such n that every word of length n contains an instance of p. Hence a
naive algorithm that given an infinite sequence of letters S = {a, b, c}∗ tries
to construct a word W of length n avoiding pattern p never stops. We use
this fact to get the desired contradiction by compressing initial segments of
the sequence S to a better extent than it is actually possible. There are
3M possible prefixes of sequence S of length M and we want to show that
it is possible to reconstruct any such prefix from a structure created by the
algorithm and that there is strictly less than 3M such structures possible to
obtain after M steps of the algorithm.

Theorem 3.1. If p is a doubled pattern of length 2k with k ≥ 4 variables,
then λ(p)∗ ≤ 3.
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Proof. Let us fix a pattern p with at least 4 variables and arbitrarily large
N . We will prove by contradiction that it is possible to construct a word
W = w1 . . . wN over alphabet Σ = {a, b, c} with holes(W ) = {i : 100 | i}
avoiding p. We consider Algorithm 1 running on a random source S that
tries to assign letters to all positions of W (even the ones with positions
divisible by 100 for easier analysis) and retract all instances of p treating
positions in holes(W ) as proper holes when it comes to pattern identification
and retracting letters assigned to them normally.

Algorithm 1: Avoiding pattern P

1 input: S : N → Σ = {a, b, c}
2 i← 1,
3 j ← 1

4 while Symbols are not assigned to entire W do
5 wj ← S(i)
6 i++
7 j++
8 if there is an occurrence R of pattern p ending in wj, then
9 let WR be the positions of R
10 for k ∈ WR do
11 erase the value of wk

12 j ← index of the first point in WR

13 return W

Note that by our assumption that appropriate assignment of letters does
not exist, the algorithm never stops. Let us fix some input sequence S and
run the algorithm for M steps (i.e. M iterations of the main loop). With
every such run we associate some structure describing the behavior of the
algorithm. Clearly such a structure depends only on M initial values of
S. More importantly sequences S and S′ which differ on at least one of M
initial positions would produce different structures. The structure we use
for description of a run of the algorithm is a tuple (P,L,R,H, F ) where:
(1) P = (p1, . . . , pM ) is a sequence of numbers such that pi is the number
of places with assigned symbols after i-th step (i.e. the number of
indexes i for which wi is defined),

(2) L = (L1, . . . , Ls) is a sequence of sets of numbers such that Li =
{li,1, . . . , li,k−1} where li,j is a number of letters assigned to j-th
variable in the i-th retracted occurrence of p during the runtime of
the algorithm,

(3) R = (r1, . . . , rr) is a sequence of letters such that after retraction
of pattern p, letters assigned to variables A,B,C, . . . are added as
suffixes of S,
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(4) H = {h1, . . . hv} is a sequence of letters assigned to holes in retracted
instances of p. After every retraction we add to H as many letters
as many holes were retracted. It is somewhat redundant with R but
it does not make an asymptotic difference,

(5) F = (f1, . . . , fn) is a sequence of symbols left in the word W after
M steps of the algorithm.

Now we need to prove that this encoding of a prefix of S is loseless and
that it is an actual compression for M large enough.

Loselessness. We prove that it is possible to reconstruct the first M ele-
ments of the input sequence S from a tuple (P,L,R,H, F ) constructed in
M steps of the algorithm. Given (P,L,R,H, F ) we are going to decode
S(M) and (P ′, L′, R′, H ′, F ′) - tuple constructed by the algorithm running
for M − 1 steps on the same input sequence S. Then by simple iteration we
can extract all values S(i) for i ∈ {1, . . . ,M}. We consider two cases:
Case 1. If pM = pM−1 + 1 then no pattern instance was retracted during
the last step of the algorithm. Then:

- S(M) is simply the last element of F ,
- P ′ is one element shorter,
- L′ = L,
- R′ = R,
- H ′ = H,
- F ′ is one element shorter.

Case 2. If pM = pM−1 − r + 1 where k > 0, then in the last step there was
a retraction of r elements that formed an instance of the pattern p. Then
from the last element of L we can reconstruct the structure of this instance,
i.e. numbers of letters assigned to each of the variables. From the last
element of P we know in which place of the word W an instance occurred
and hence the number and placement of holes present in the instance. From
the last elements of R we are able to reconstruct the exact letters forming
an instance (number of letters we need to subtract from R is equal to the
sum of lengths of subwords substituted to variables, which we already know
from L). Note that these letters were not necessarily the letters assigned to
the places with holes so finally from H we reconstruct the letters assigned
to all holes in the instance (number of holes is already known from P ).
Knowing precisely the structure of the retracted fragment, we can find the
last element of S and the quintuple (P ′, L′, R′, H ′, F ′):

- S(M) is the last element of the reconstructed retracted fragment,
- P ′ is one element shorter,
- L′ is one element (i.e. set) shorter,
- R′ is shorter by all elements used to reconstruct the retracted frag-
ment,
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- H ′ is shorter by as many elements as many holes were in the recon-
structed fragment,
- F ′ is equal to F with the reconstructed fragment added as a suffix
without the last element added at the end.

Compression. We are concerned with the asymptotic number of descrip-
tions when M tends to infinity. We will bound P,L,R together and then
separately H and F .

Bounding P,L,R. We use analytic combinatorics to find an exponen-
tial order of sequence (Ti)i∈N of possible tuples (P,L,R) occurring after i
steps of the algorithm. Before we can use the previously presented method,
we need to apply two transformations on P . First we transform P ’s into
generalized Dyck paths by adding downsteps for every retraction – if in
P number n follows number k and n < k we add between them all nat-
ural numbers between n and k. For example sequence (0, 1, 2, 3, 4, 1, 2, 0)
would be transformed into (0, 1, 2, 3, 4, 3, 2, 1, 2, 1, 0). Such modified P is a
sequence in which two consecutive numbers differ by exactly 1, which clearly
corresponds to a generalized Dyck path. Note that this operation makes P
at most two times longer.
Second transformation we apply only to the paths ending on level other
than first. Every such a path we artificially prolong by adding sequence of
upward steps until it reaches level N and then sequence of downward steps
until it reaches level 1. We add upward steps because we want to keep the
condition that all the paths have descendances at least as long as many
variables are in the pattern p.
Note that if M (numbers of steps of Algorithm 1, which is now close to
half of the length of paths) will be big enough in comparison to N , then
such operation will not change the exponential order of the number of our
paths. We construct the desired generating function step by step.
Let P (z) be the generating function encoding all Dyck paths with falls
of lengths being lengths of possible retractions in the algorithm, PL(z) be
the generating function of such Dyck paths encoded together with possible
L’s and finally t(z) be the desired generating function for P,L and R. We
will use Flajolet’s symbolic operators notation [3] for operations on combi-
natorial classes. We use slightly modified last passages decomposition for
Dyck paths. Let P0,n(z) be a generating function of possible paths starting
at level 0 and ending at level n. Recording the times at which each level
0, . . . , n is last traversed gives us P0,n(z) = P0,1(z)

n−1 so summing up for all
possible last descendances, we get P (z) = z(1+SEQ(P (z))). Since together
with last descendance we want to record L we need to divide it into k parts
corresponding to variables in such a way that the part corresponding to the
i-th variable occurring ui times in p is of length divisible by ui.
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We get

PL(z) = z

(
1 +

( k∏
i=1

(
SEQ

(
SEQui

(PL(z))
))))

Encoding it together with R, we get construction for t and transform it into
generating function equation:

t(z) = z

(
1 +

( k∏
i=1

(
SEQ

(
SEQui

(3 · t(z)))))
)

⇓

t(z) = z

(
1 +

( k∏
i=1

( 3t(z)ui

1− 3t(z)ui

)))
.

Function φ(z) = 1+
(∏k

i=1

(
3zui

1−3zui

))
satisfies conditions I−V I necessary

to use our method. Since t(z) is the formal solution of the equation t(z) = z ·
φ(t(z)) and we are interested in bounding exponential order of its coefficients
from above we need to investigate maximum of its inversion – x

φ(x) . To do
that we need to find for which u’s the function achieves the smallest values.
For this purpose we consider the function

ϕ(u1, . . . , uk) =
t

1 +
∏k

i=1(
3tui

1−3tui )

for t ∈ (0, 0.6), u1, . . . , uk ≥ 2 – we can use this restriction on t since we
don’t need to find the real maximum of x

φ(x) and restriction on u’s comes
from the fact that the pattern is doubled. Since ϕ(u1, . . . , uk) is convex
for variables u1, . . . , uk and maximal value in convex set {(u1, . . . , uk); 2 ≤
ui,Σ

k
i=1uk = 2k} is one of sets extremal points we get:

t

1 +
∏k

i=1(
3tui

1−3tui )
≥ t

1 +
∏k−1

i=1
3t2

(1−3t2)
· 3t2

k−2k+2

1−3t2
k−2k+2

⇓
t

1 +
∏k

i=1
3tui

1−3tui

≥ t

1 +
∏3

i=1
3t2

1−3t2
· 3t10

1−3t10

.

Using Maple software, we check that the right side of the last inequality
achieves 0.471 for t = 0.487 so exponential order of Tn is at most 1/0.487 =
2.0533 and hence there is at most 2.0533M possible tuples P,L,R.
Bounding H. Since a pattern p has length at least 2k for k ≥ 4 and its
every retracted instance has at least one letter substituted to every variable
then every retraction is of length at least 16. Also, since distance between
two holes is 100, every retraction adds at most  |R|

100� letters to H. Moreover,
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the sum of retraction lengths is at most M (we couldn’t retract more than
we wrote) so there is at most 3

M
16 < 1.08M possible H’s.

Bounding F . Finite sequence is of length at most |W | − 1 so there are
less then 4|W | possibilities of such sequence, because there can be assigned
symbols 0, 1, 2 or no symbol assigned at every place. Symbols � are assigned
at prespecified positions so there is no need to encode them.
Bounding P,L,R,H, F . Summing all bounds together, we get that for M
big enough there is at most (2.0533 · 1.08)M · 4|W | < 2.2176M · 4|W | < 3M

tuples and they fully describe 3M possible prefixes of S, which gives us the
desired contradiction. �
4. Concluding remarks. Overall, entropy compression is a useful method
for proving results for partial words. It is mainly helpful to obtain bounds for
bigger numbers of variables, since it needs to encode Dyck paths and takes
advantage of the fact that short retractions never occur. Straightforward
application of developed methods for the second part of the conjecture –
about binary words, provides the desired result for doubled patterns with
at least 3 variables. To prove it for shorter patterns it may be necessary to
use some other, possibly deterministic methods.
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