BINLONG LI and BO NING

On path-quasar Ramsey numbers

Abstract

Let G_{1} and G_{2} be two given graphs. The Ramsey number $R\left(G_{1}, G_{2}\right)$ is the least integer r such that for every graph G on r vertices, either G contains a G_{1} or \bar{G} contains a G_{2}. Parsons gave a recursive formula to determine the values of $R\left(P_{n}, K_{1, m}\right)$, where P_{n} is a path on n vertices and $K_{1, m}$ is a star on $m+1$ vertices. In this note, we study the Ramsey numbers $R\left(P_{n}, K_{1} \vee F_{m}\right)$, where F_{m} is a linear forest on m vertices. We determine the exact values of $R\left(P_{n}, K_{1} \vee F_{m}\right)$ for the cases $m \leq n$ and $m \geq 2 n$, and for the case that F_{m} has no odd component. Moreover, we give a lower bound and an upper bound for the case $n+1 \leq m \leq 2 n-1$ and F_{m} has at least one odd component.

1. Introduction. We use Bondy and Murty [1] for terminology and notation not defined here, and consider finite simple graphs only.

Let G be a graph. We denote by $\nu(G)$ the order of G, by $\delta(G)$ the minimum degree of G, by $\omega(G)$ the number of components of G, and by $o(G)$ the number of components of G with an odd order.

Let G_{1} and G_{2} be two graphs. The Ramsey number $R\left(G_{1}, G_{2}\right)$, is defined as the least integer r such that for every graph G on r vertices, either G contains a G_{1} or \bar{G} contains a G_{2}, where \bar{G} is the complement of G. If G_{1} and G_{2} are both complete, then $R\left(G_{1}, G_{2}\right)$ is the classical Ramsey number $r\left(\nu\left(G_{1}\right), \nu\left(G_{2}\right)\right)$. Otherwise, $R\left(G_{1}, G_{2}\right)$ is usually called the generalized

[^0]Ramsey number. We refer the reader to Graham et al. [5] for an introduction to the area of Ramsey theory.

We denote by P_{n} the path on n vertices. The graph $K_{1, m}, m \geq 2$, is called a star. The only vertex of degree m is called the center of the star. In 1974, Parsons [7] determined $R\left(P_{n}, K_{1, m}\right)$ for all n, m. We list Parsons' result as below.

Theorem 1 (Parsons [7]).

$$
R\left(P_{n}, K_{1, m}\right)=\left\{\begin{array}{lr}
n, & 2 \leq m \leq\lceil n / 2\rceil \\
2 m-1, & \lceil n / 2\rceil+1 \leq m \leq n \\
\max \left\{R\left(P_{n-1}, K_{1, m}\right), R\left(P_{n}, K_{1, m-n+1}\right)+n-1\right\}, n \geq 3 \\
\text { and } m \geq n+1
\end{array}\right.
$$

It is trivial that $R\left(P_{2}, K_{1, m}\right)=m+1$. So the above recursive formula can be used to determine all path-star Ramsey numbers.

In 1978, Rousseau and Sheehan [8] gave an explicit formula for the Ramsey numbers of paths versus stars. Let $t(n, m), n, m \geq 2$, be the values defined as

$$
t(n, m)= \begin{cases}(n-1) \cdot \beta+1, & \alpha \leq \gamma \\ \lfloor(m-1) / \beta\rfloor+m, & \alpha>\gamma\end{cases}
$$

where

$$
\alpha=\frac{m-1}{n-1}, \beta=\lceil\alpha\rceil \text { and } \gamma=\frac{\beta^{2}}{\beta+1}
$$

Theorem 2 (Rousseau and Sheehan [8]). $R\left(P_{n}, K_{1, m}\right)=t(n, m)$ for all $n, m \geq 2$.

The interested reader can compare the above two formulae. We will give an independent and short proof of Theorem 2 in Section 3.

A linear forest is a forest each component of which is a path. We call the graph obtained by joining a vertex to every vertex of a nontrivial linear forest a quasar. Thus a star is a quasar, and we call a quasar a proper one if it is not a star.

It may be interesting to consider the Ramsey numbers of paths versus proper quasars. Some results of this area were obtained. Salman and Broersma [9, 10] studied the Ramsey numbers of P_{n} versus $K_{1} \vee m K_{2}$ (this graph is called a fan in [9]), and of P_{n} versus $K_{1} \vee P_{m}$ (this graph is called a kipas in [10]). Both cases have not been completely solved in [9, 10]. Note that fans and kipases are special cases of quasars. In the following, we will consider the Ramsey numbers of paths versus proper quasars. As an application of our results, we will give a complete solution to the problem of determining the Ramsey numbers of paths versus fans.

We first determine the exact values of $R\left(P_{n}, K_{1} \vee F\right)$ when $m \leq n$ or $m \geq 2 n$, where F is a non-empty linear forest on m vertices.

Theorem 3. Let F be a non-empty linear forest on m vertices. Then

$$
R\left(P_{n}, K_{1} \vee F\right)= \begin{cases}2 n-1, & 2 \leq m \leq n \\ t(n, m), & n \geq 2 \text { and } m \geq 2 n\end{cases}
$$

So we have an open problem for the case $n+1 \leq m \leq 2 n-1$. For this case we have the following upper and lower bounds. By $\operatorname{par}(m)$ we denote the parity of m.
Theorem 4. If $n \geq 2$ and $n+1 \leq m \leq 2 n-1$, and F is a non-empty linear forest on m vertices, then
(1) $R\left(P_{n}, K_{1} \vee F\right) \leq m+n-2+\operatorname{par}(m)$; and
(2) $R\left(P_{n}, K_{1} \vee F\right) \geq \max \{2 n-1,\lceil 3 m / 2\rceil-1, m+n-o(F)-2\}$.

If F contains no odd component, then the upper bound and the lower bound in Theorem 4 are equal. Thus we conclude the following.
Corollary 1. If $n \geq 2$ and $n+1 \leq m \leq 2 n-1$, and F is a linear forest on m vertices such that each component of F has an even order, then

$$
R\left(P_{n}, K_{1} \vee F\right)=m+n-2
$$

Note that Theorem 3 and Corollary 1 give all the path-quasar Ramsey numbers $R\left(P_{n}, K_{1} \vee F\right)$ when $o(F)=0$, including all the Ramsey numbers of paths versus fans.

Corollary 2.

$$
R\left(P_{n}, K_{1} \vee m K_{2}\right)= \begin{cases}2 n-1, & 1 \leq m \leq\lfloor n / 2\rfloor ; \\ 2 m+n-2, & \lfloor n / 2\rfloor+1 \leq m \leq n-1 ; \\ t(n, 2 m), & n \geq 2 \text { and } m \geq n .\end{cases}
$$

We propose the following conjecture to complete this section.
Conjecture 1. If $n \geq 2$ and $n+1 \leq m \leq 2 n-1$, and F is a non-empty linear forest on m vertices, then

$$
R\left(P_{n}, K_{1} \vee F\right)=\max \left\{2 n-1,\left\lceil\frac{3 m}{2}\right\rceil-1, m+n-o(F)-2\right\} .
$$

2. Preliminaries. The following useful result is deduced from Dirac [3]. We present it here without a proof.
Theorem 5. Every connected graph G contains a path of order at least $\min \{\nu(G), 2 \delta(G)+1\}$.

We follow the notation in [6]. For integers s, t, the interval $[s, t]$ is the set of integers i with $s \leq i \leq t$. Note that if $s>t$, then $[s, t]=\emptyset$. Let X be a subset of \mathbb{N}. We set $\mathcal{L}(X)=\left\{\sum_{i=1}^{k} x_{i}: x_{i} \in X, k \in \mathbb{N}\right\}$, and suppose $0 \in \mathcal{L}(X)$ for any set X. Note that if $1 \in X$, then $\mathcal{L}(X)=\mathbb{N}$. For an interval $[s, t]$, we use $\mathcal{L}[s, t]$ instead of $\mathcal{L}([s, t])$.

The following lemma was proved by the authors in [6]. We include the proof here for the completeness of our discussion.

Lemma 1. $t(n, m)=\min \{t: t \notin \mathcal{L}[t-m+1, n-1]\}$.
Proof. Set $T=\{t: t \in \mathcal{L}[t-m+1, n-1]\}$. Note that if $t \in T$, then $t-1 \in T$. So it is sufficient to prove that $t(n, m)=\max (T)+1$.

Note that

$$
t \in T \Leftrightarrow t \in \mathcal{L}[t-m+1, n-1]
$$

$\Leftrightarrow t \in[k(t-m+1), k(n-1)]$, for some integer k
$\Leftrightarrow t \leq \frac{k}{k-1}(m-1)$ and $t \leq k(n-1)$, for some integer k
$\Leftrightarrow t \leq k(n-1)$ for some integer $k<\alpha+1$, or

$$
t \leq\left\lfloor\frac{m-1}{k-1}\right\rfloor+m-1, \text { for some integer } k \geq \alpha+1
$$

This implies that

$$
T=\{t: t \leq k(n-1), k \leq \beta\} \cup\left\{t: t \leq\left\lfloor\frac{m-1}{k-1}\right\rfloor+m-1, k \geq \beta+1\right\}
$$

Thus

$$
\begin{aligned}
\max (T) & =\max \left\{(n-1) \beta,\left\lfloor\frac{m-1}{\beta}\right\rfloor+m-1\right\} \\
& = \begin{cases}(n-1) \cdot \beta, & \alpha \leq \gamma \\
\lfloor(m-1) / \beta\rfloor+m-1, & \alpha>\gamma\end{cases}
\end{aligned}
$$

We conclude that $t(n, m)=\max (T)+1$.
We use C_{m} to denote the cycle on m vertices, and W_{m} to denote the wheel on $m+1$ vertices, i.e., the graph obtained by joining a vertex to every vertex of a C_{m}. We will use the following formulas for path-cycle Ramsey numbers and for path-wheel Ramsey numbers.

Theorem 6 (Faudree et al. [4]). If $n \geq 2$ and $m \geq 3$, then
$R\left(P_{n}, C_{m}\right)= \begin{cases}2 n-1, & \text { for } n \geq m \text { and } m \text { is odd; } \\ n+m / 2-1, & \text { for } n \geq m \text { and } m \text { is even; } \\ \max \{m+\lfloor n / 2\rfloor-1,2 n-1\}, & \text { for } m>n \text { and } m \text { is odd; } \\ m+\lfloor n / 2\rfloor-1, & \text { for } m>n \text { and } m \text { is even }\end{cases}$

Theorem 7.

(1) (Chen et al. [2]) If $3 \leq m \leq n+1$, then

$$
R\left(P_{n}, W_{m}\right)= \begin{cases}3 n-2, & m \text { is odd } \\ 2 n-1, & m \text { is even }\end{cases}
$$

(2) (Zhang [11]) If $n+2 \leq m \leq 2 n$, then

$$
R\left(P_{n}, W_{m}\right)= \begin{cases}3 n-2, & m \text { is odd } \\ m+n-2, & m \text { is even } .\end{cases}
$$

(3) (Li and Ning [6]) If $n \geq 2$ and $m \geq 2 n+1$, then

$$
R\left(P_{n}, W_{m}\right)=t(n, m)
$$

3. Proofs of the theorems. Proof of Theorem 2. Let $r=t(n, m)$. By Lemma 1, $t(n, m)=\min \{t: t \notin \mathcal{L}[t-m+1, n-1]\}$. Thus $r-1 \in$ $\mathcal{L}[r-m, n-1]$. Let $r-1=\sum_{i=1}^{k} r_{i}$, where $r_{i} \in[r-m, n-1], 1 \leq i \leq k$. Let G be a graph with k components H_{1}, \ldots, H_{k} such that H_{i} is a clique on r_{i} vertices. Note that G contains no P_{n} since every component of G has less than n vertices; and \bar{G} contains no $K_{1, m}$ since every vertex of G has less than m nonadjacent vertices. This implies that $R\left(P_{n}, K_{1, m}\right) \geq \nu(G)+1=r$.

Now we will prove that $R\left(P_{n}, K_{1, m}\right) \leq r$. Let us assume that this inequality does not hold. Let G be a graph on r vertices such that G contains no P_{n} and \bar{G} contains no $K_{1, m}$.
Claim 1. $m+\lfloor n / 2\rfloor \leq r \leq m+n-1$, i.e., $1 \leq m+n-r \leq\lceil n / 2\rceil$.
Proof. Let $r^{\prime}=m+n-1$. Since $r^{\prime}-m+1=n,\left[r^{\prime}-m+1, n-1\right]=\emptyset$, and $r^{\prime} \notin \mathcal{L}(\emptyset)=\{0\}$, we have $r \leq r^{\prime}=m+n-1$ and hence $m+n-r \geq 1$.

Now we prove that $m+n-r \leq(n+1) / 2$. By Lemma 1, $r \notin \mathcal{L}[r-$ $m+1, n-1]$. Thus $r \notin[k(r-m+1), k(n-1)]$, for every k. That is, $r \in[k(n-1)+1,(k+1)(r-m+1)-1]$, for some k. This implies that

$$
r \geq k(n-1)+1 \text { and } r \geq \frac{k+1}{k} m-1
$$

for some $k \geq 1$.
If $m \leq\left(k^{2} n-k^{2}+2 k\right) /(k+1)$, then

$$
\begin{aligned}
m+n-r & \leq \frac{k^{2} n-k^{2}+2 k}{k+1}+n-(k(n-1)+1) \\
& =\frac{n+2 k-1}{k+1} \leq \frac{n+1}{2}
\end{aligned}
$$

If $m>\left(k^{2} n-k^{2}+2 k\right) /(k+1)$, then

$$
\begin{aligned}
m+n-r & \leq m+n-\left(\frac{k+1}{k} m-1\right) \\
& =n-\frac{m}{k}+1<n-\frac{k^{2} n-k^{2}+2 k}{k(k+1)}+1 \\
& =\frac{n+2 k-1}{k+1} \leq \frac{n+1}{2}
\end{aligned}
$$

Thus we have $m+n-r \leq\lfloor(n+1) / 2\rfloor=\lceil n / 2\rceil$.
Case 1. Every component of G has order less than n.
Let $H_{i}, 1 \leq i \leq k=\omega(G)$, be the components of G. Since $r \notin \mathcal{L}[r-m+$ $1, n-1$], there is a component, say H_{1}, with order at most $r-m$. Thus
$\sum_{i=2}^{k} \nu\left(H_{i}\right) \geq m$. Let v be a vertex in H_{1}. Since v is nonadjacent to every vertex in $G-H_{1}, \bar{G}$ contains a $K_{1, m}$ with the center v, a contradiction.

Case 2. There is a component of G with order at least n.
Let H be a component of G with $\nu(H) \geq n$. If every vertex of H has degree at least $\lfloor n / 2\rfloor$, then by Theorem $5, H$ contains a P_{n}, a contradiction. Thus there is a vertex v in H with $d(v) \leq\lfloor n / 2\rfloor-1$. Let $G^{\prime}=G-v-N(v)$. Then by Claim 1,

$$
\nu\left(G^{\prime}\right)=\nu(G)-1-d(v) \geq r-\left\lfloor\frac{n}{2}\right\rfloor \geq m .
$$

Since v is nonadjacent to every vertex in G^{\prime}, \bar{G} contains a $K_{1, m}$ with the center v, a contradiction.

The proof is complete.
Proof of Theorem 3. If $m=2$, then $K_{1} \vee F$ is a triangle (recall that F is non-empty). From Theorem 6, we get that $R\left(P_{n}, C_{3}\right)=2 n-1$.

If $3 \leq m \leq n$, then $K_{1} \vee F$ is a supergraph of C_{3} and a subgraph of $W_{m+\operatorname{par}(m)}$, we have

$$
R\left(P_{n}, C_{3}\right) \leq R\left(P_{n}, K_{1} \vee F\right) \leq R\left(P_{n}, W_{m+\operatorname{par}(m)}\right) .
$$

By Theorems 6 and $7, R\left(P_{n}, C_{3}\right)=R\left(P_{n}, W_{m+\operatorname{par}(m)}\right)=2 n-1$. We conclude that $R\left(P_{n}, K_{1} \vee F\right)=2 n-1$.

Now we deal with the case $m \geq 2 n$. Note that $K_{1} \vee F$ is a supergraph of $K_{1, m}$ and a subgraph of W_{m}. We have

$$
R\left(P_{n}, K_{1, m}\right) \leq R\left(P_{n}, K_{1} \vee F\right) \leq R\left(P_{n}, W_{m}\right) .
$$

By Theorems 2 and $7, R\left(P_{n}, K_{1, m}\right)=R\left(P_{n}, W_{m}\right)=t(n, m)$ (we remark that if $m=2 n$, then $m+n-2=t(n, m))$. We conclude that $R\left(P_{n}, K_{1} \vee F\right)=$ $t(n, m)$.

The proof is complete.
Proof of Theorem 4. Since $K_{1} \vee F$ is a subgraph of $W_{m+\operatorname{par}(m)}$, by Theorem 7, we have

$$
R\left(P_{n}, K_{1} \vee F\right) \leq m+n-2+\operatorname{par}(m) .
$$

Now we construct three graphs. Let

$$
\begin{aligned}
& G_{1}=2 K_{n-1}, \\
& G_{2}=K_{\lfloor m / 2\rfloor} \cup 2 K_{\lceil m / 2\rceil-1} \text { and } \\
& G_{3}=K_{n-1} \cup 2 K_{(m-o(F)) / 2-1} .
\end{aligned}
$$

One can check that all the three graphs contain no P_{n} and their complements contain no $K_{1} \vee F$. This implies that $R\left(P_{n}, K_{1} \vee F\right) \geq \max \left\{\nu\left(G_{i}\right)+1\right.$:
$i=1,2,3\}$. Since $\nu\left(G_{1}\right)=2 n-2, \nu\left(G_{2}\right)=\lceil 3 m / 2\rceil-2$ and $\nu\left(G_{3}\right)=$ $m+n-o(F)-3$, we get that

$$
R\left(P_{n}, K_{1} \vee F\right) \geq \max \left\{2 n-1,\left\lceil\frac{3 m}{2}\right\rceil-1, m+n-o(F)-2\right\}
$$

The proof is complete.

References

[1] Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
[2] Chen, Y., Zhang, Y., Zhang, K., The Ramsey numbers of paths versus wheels, Discrete Math. 290 (1) (2005), 85-87.
[3] Dirac, G. A., Some theorems on abstract graphs, Proc. London. Math. Soc. 2 (1952), 69-81.
[4] Faudree, R. J., Lawrence, S. L., Parsons, T. D., Schelp, R. H., Path-cycle Ramsey numbers, Discrete Math. 10 (2) (1974), 269-277.
[5] Graham, R. L., Rothschild, B. L., Spencer, J. H., Ramsey Theory, Second Edition, John Wiley \& Sons Inc., New York, 1990.
[6] Li, B., Ning, B., The Ramsey numbers of paths versus wheels: a complete solution, Electron. J. Combin. 21 (4) (2014), \#P4.41.
[7] Parsons, T. D., Path-star Ramsey numbers, J. Combin. Theory, Ser. B 17 (1) (1974), 51-58.
[8] Rousseau, C. C., Sheehan, J., A class of Ramsey problems involving trees, J. London Math. Soc. 2 (3) (1978), 392-396.
[9] Salman, A. N. M., Broersma, H. J., Path-fan Ramsey numbers, Discrete Applied Math. 154 (9) (2006), 1429-1436.
[10] Salman, A. N. M., Broersma, H. J., Path-kipas Ramsey numbers, Discrete Applied Math. 155 (14) (2007), 1878-1884.
[11] Zhang, Y., On Ramsey numbers of short paths versus large wheels, Ars Combin. 89 (2008), 11-20.

Binlong Li
Department of Applied Mathematics
Northwestern Polytechnical University
Xi'an, Shaanxi 710072
P. R. China

Department of Mathematics
University of West Bohemia
Univerzitní 8, 30614 Plzeň
Czech Republic
e-mail: libinlong@mail.nwpu.edu.cn
Received March 5, 2014

Bo Ning
Department of Applied Mathematics
Northwestern Polytechnical University
Xi'an, Shaanxi 710072
P. R. China
e-mail: ningbo_math84@mail.nwpu.edu.cn

[^0]: 2010 Mathematics Subject Classification. 05C55, 05D10.
 Key words and phrases. Ramsey number, path, star, quasar.
 Supported by NSFC (No. 11271300) and the Doctorate Foundation of Northwestern Polytechnical University (No. cx201202 and No. cx201326).

