ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXVIII, NO. 1, 2014

SECTIO A

21 - 29

HALINA BIELAK and SEBASTIAN KIELISZEK

The Turán number of the graph $3P_4$

ABSTRACT. Let ex(n, G) denote the maximum number of edges in a graph on *n* vertices which does not contain *G* as a subgraph. Let P_i denote a path consisting of *i* vertices and let mP_i denote *m* disjoint copies of P_i . In this paper we count $ex(n, 3P_4)$.

1. Introduction. Let G = (V(G), E(G)) be a graph with the vertex set V(G) and the edge set E(G). The Turán number of the graph G, denoted by ex(n, G), is the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let P_i denote a path consisting of i vertices and let mP_i denote m disjoint copies of P_i . By C_q we denote a cycle of order q. For two vertex disjoint graphs G and F by $G \cup F$ we denote the vertex disjoint union of G and F, and by G + F we denote the join of the graphs. By \overline{G} we denote the complement of the graph G. For a vertex $x \in V(G)$ we define $N_G(x) = \{y \in V(G) | \{x, y\} \in E(G)\}$. Let F be a subgraph of G. Let $\deg_F(x) = N_G(x) \cap V(F)$. Moreover, for $A \subseteq V(G)$ let $G|_A$ denote the subgraph of G induced by A. The basic notions not defined in this paper can be found in [5]. First we present the following important lemma which is used to prove our main results.

Lemma 1 (Erdős, Gallai [2]). Suppose that |V(G)| = n. If the following inequality

$$\frac{(n-1)(l-1)}{2} + 1 \le |E(G)|$$

²⁰⁰⁰ Mathematics Subject Classification. 05C35, 05C38.

Key words and phrases. Forests, trees, Turán number.

is satisfied for some $l \in \mathbf{N}$, then there exists a cycle C_q in G for some $q \ge l$.

We will use the following famous theorem.

Theorem 1 (Faudree and Schelp [3]). If G is a graph with |V(G)| = kn + r $(0 \le k, 0 \le r < n)$ and G contains no P_{n+1} , then $|E(G)| \le kn(n-1)/2 + r(r-1)/2$ with the equality if and only if $G = kK_n \cup K_r$ or $G = tK_n \cup (K_{(n-1)/2} + \overline{K}_{(n+1)/2+(k-t-1)n+r})$ for some $0 \le t < k$, where n is odd, and k > 0, $r = (n \pm 1)/2$.

Gorgol [4] studied the Turán number for disjoint copies of graphs. She counted $ex(n, 2P_3)$ and $ex(n, 3P_3)$.

Theorem 2 (Gorgol [4]).

$$ex(n, 2P_3) = \left\lfloor \frac{n-1}{2} \right\rfloor + n - 1, \text{ for } n \ge 9.$$
$$ex(n, 3P_3) = \left\lfloor \frac{n-1}{2} \right\rfloor + 2n - 4, \text{ for } n \ge 14.$$

Moreover, she proved more general results concerning the properties of some extremal Turán graphs for disjoint copies of a given graph. Bushaw and Kettle [1] extended some of Gorgol's results as follows.

Theorem 3 (Bushaw and Kettle [1]).

$$ex(n,kP_3) = \left\lfloor \frac{n-k+1}{2} \right\rfloor + (n-k+1)(k-1) + \binom{k-1}{2}, \text{ for } n \ge 7k.$$

$$ex(n,kP_t) = \left(n-k\left\lfloor \frac{t}{2} \right\rfloor + 1\right) \left(k\left\lfloor \frac{t}{2} \right\rfloor - 1\right) + \binom{k\left\lfloor \frac{t}{2} \right\rfloor - 1}{2} + \epsilon,$$

$$ex(n,kP_t) \ge 2t \left(1+k\left(\left\lceil \frac{t}{2} \right\rceil + 1\right)\left(\left\lceil \frac{t}{2} \right\rceil\right)\right), \text{ where } \epsilon = 1 \text{ for odd } t \text{ and } \epsilon = 0 \text{ for}$$

for $n \ge 2t\left(1+k\left(\left|\frac{t}{2}\right|+1\right)\left(\frac{t}{\left\lfloor\frac{t}{2}\right\rfloor}\right)\right)$, where $\epsilon = 1$ for odd t and $\epsilon = even t$.

In particular, Bushaw and Kettle [1] counted $ex(n, 3P_4)$ for the case $n \ge 440$. We present $ex(n, 3P_4)$ for all positive integers n.

2. Results. First we prove the following result.

Theorem 4. Let $n \ge 15$. Then

(1)
$$ex(n, 3P_4) = 5n - 15.$$

Proof. First note that the graph $K_5 + \overline{K}_{n-5}$ does not contain $3P_4$ as a subgraph. Therefore, $ex(n, 3P_4) \ge 5n - 15$ and we would like to prove the opposite inequality. Suppose that there exists a graph G with $|V(G)| = n \ge 15$ and |E(G)| = 5n - 14 without $3P_4$ as a subgraph. Applying Lemma 1 to the graph G, we obtain

$$\frac{(n-1)(l-1)}{2} + 1 \le 5n - 14,$$

By
$$n \ge 15$$
,
 $\frac{20}{n-1} < 2$

and we conclude that $l \leq 9$. It means that the graph G contains a cycle $C_q, q \geq 9$. Let $0, 1, 2, \ldots, q-1$ be the consecutive vertices in C_q . We should consider the following cases:

Case 1. Let $q \ge 12$. We have C_{12} in G, so $3P_4$ is a subgraph of G, a contradiction.

Case 2. Let q = 11.

FIGURE 1. A graph G with the cycle C_{11} .

Let $F = G - V(C_{11})$. Note that C_{11} cannot be connected by an edge with F (see Figure 1 for an illustration). The minimum number of edges in F is equal to 5n - 14 - 55 = 5n - 69. By Theorem 1 we know that

$$ex(k, P_4) = 3\left\lfloor \frac{k}{3} \right\rfloor + \binom{r}{2}, \ k \equiv r \pmod{3}$$

where r is the rest from dividing k by 3. We set k = n - 11. If

$$3\left\lfloor\frac{n-11}{3}\right\rfloor + \binom{r}{2} < 5n - 69$$

then it means that P_4 is a subgraph of F. We check this. (a) r = 0

$$5n - 3\frac{n-11}{3} > 69$$

$$n > 14.$$

(b) r = 1

$$5n - 3\frac{n-12}{3} > 69$$

n > 14.

(c) r = 2

$$5n - 3\frac{n-13}{3} > 1 + 69$$

$$n > 14.$$

So we get P_4 in F, a contradiction.

Case 3. Let q = 10.

FIGURE 2. A graph G with the cycle C_{10} .

Let $F = G - V(C_{10})$. Note that |V(F)| = n - 10. The set of edges containing a vertex of F we can divide into:

• edges connecting C_{10} and F, i.e. the edges $\{x, f\}$ with $x \in V(C_{10}), f \in V(F)$,

• edges connecting both vertices inside F, i.e. the edges $\{f_i, f_j\}$ with f_i , $f_j \in V(F), i \neq j$.

Notice that if the edge $\{0, f_1\}$ exists for some $f_1 \in V(F)$, then there cannot exist edges $\{1, f_1\}$ and $\{9, f_1\}$, in the opposite case we obtain a longer cycle, i.e. C_{11} . So at most 5 vertices of C_{10} can be adjacent to the vertex $f_1 \in V(F)$ (see Figure 2 for an illustration). Moreover, $\{j, f\} \notin E(G)$ for $f \in V(F) - \{f_1\}$ and $j \neq 2l + 1$, l = 0, 1, 2, 3, 4, $j \in V(C_{10})$, in the opposite case we get $3P_4$ in G. Let

$$V(F) = V_0 \cup V_1 \cup V_2 \cup V_3 \cup V_4 \cup V_5$$

be the partition of V(F) such that each vertex from V_i has exactly *i* neighbors in C_{10} . Note that vertices from sets V_i , i > 0 cannot be connected between them and $\deg_F(u) = 0$ for each $u \in \bigcup_{i=1}^5 V_i$. Vertices from the set V_0 can be connected only between them. So if $|V_0| = k$, then $|E(G|_{V_0})| \leq ex(k, P_4)$. First we show that $|E(G|_{V_0})| \leq |V_0|$. If $r \equiv 0 \pmod{3}$, then

$$ex(k, P_4) = 3\frac{k}{3} = k = |V_0|.$$

If $r \equiv 1 \pmod{3}$, then

$$ex(k, P_4) = 3\frac{k-1}{3} = k-1 \le |V_0|.$$

If $r \equiv 2 \pmod{3}$, then

$$ex(k, P_4) = 3\frac{k-2}{3} + 1 = k - 1 \le |V_0|$$

We consider three subcases: **Case 3.1.** Let $V_5 \neq \emptyset$. Then

$$|E(G)| \le {\binom{10}{2}} - {\binom{5}{2}} + \sum_{i=1}^{5} i \cdot |V_i| + |E(V_0)| \le 35 + \sum_{i=1}^{5} i \cdot |V_i| + |V_0|$$
$$\le 35 + 5\sum_{i=1}^{5} |V_i| + 5|V_0| = 35 + 5(n-10) = 5n - 15.$$

Recall that |E(G)| = 5n - 14. So we must add one more edge and we obtain $3P_4$ in G, a contradiction.

Case 3.2. Let $V_5 = \emptyset$ and $V_4 \neq \emptyset$. Then

$$|E(G)| \le \binom{10}{2} - 5 + \sum_{i=1}^{4} i \cdot |V_i| + |V_0| \le 45 - 5 + 4 \cdot \sum_{i=1}^{4} |V_i| + |V_0| \le 4n < 5n - 14$$

for $n \ge 15$. So again we must add one more edge which means that we get a $3P_4$ in G, a contradiction.

Case 3.3. Let $V_5 = \emptyset$ and $V_4 = \emptyset$. Then

$$|E(G)| \le \binom{10}{2} + 3\sum_{i=1}^{3} |V_i| + |V_0| \le 45 + 3(n-10) = 3n + 15 < 5n - 14$$

for $n \ge 15$. We obtain a contradiction.

Case 4. Let q = 9. Let $F = G - V(C_9)$. If there does not exist any edge between C_9 and F, then $|E(F)| \ge 5n - 50$. So if $ex(n - 9, P_4) < 5n - 50$, then there exists a path P_4 in the graph F. (a) r = 0

$$3\frac{n-9}{3} < 5n - 50,$$

$$n > 10.$$

(b) r = 1

$$3\frac{n-10}{3} < 5n - 50,$$

$$n > 10.$$

(c) r = 2

$$3\frac{n-11}{3} + 1 < 5n - 50,$$

n > 10.

In this case we obtain a contradiction.

FIGURE 3. A graph G with the cycle C_9 .

Suppose that there exists an edge $\{0, f_1\}$ for some $f_1 \in V(F)$. Note that the vertex f_1 can be adjacent to another vertex $f_{1,1}$ from F and we do not obtain $3P_4$ (see Figure 3 for an illustration). Now we cannot create other edges from $F - \{f_1, f_{1,1}\}$ to C_9 , in the opposite case we obtain $3P_4$. Note that

$$|E(G)| \le \binom{9}{2} + 7 + |N_F(f_1)| + ex(n - 10 - |N_F(f_1)|, P_4)$$

$$\le 43 + |N_F(f_1)| + (n - 10 - |N_F(f_1)|) = n + 33 < 5n - 14$$

for $n \ge 12$.

So we have $3P_4$ in graph G, a contradiction. The proof is completed. \Box

Remark 1. Note that if $n \in \{1, ..., 11\}$, then $ex(n, 3P_4) = \binom{n}{2}$. It is clear because the total number of vertices does not exceed 12 and K_n does not contain $3P_4$. Moreover, $\binom{n}{2} \ge 5n - 15$ for $n \in \{1, ..., 11\}$.

Remark 2. For n = 12 we have $ex(n, 3P_4) \ge {\binom{11}{2}} = 55$. It is clear because $K_{11} \cup K_1$ does not contain $3P_4$. Let |E(G)| = 56. Applying Lemma 1, we obtain that

$$\frac{11(l-1)}{2} + 1 \le 56,$$

$$l < 11.$$

So there exists a cycle C_q , $q \ge 11$. It is clear that if q = 12, there exists $3P_4$.

FIGURE 4. A graph with and C_{11} for $ex(12, 3P_4)$.

If q = 11, then we have $\deg_{C_{11}}(f) = 0$ for $f \in V(F)$ and $|E(G|_{C_{11}})| \leq {\binom{11}{2}} = 55$ (see Figure 4 for an illustration). We get a contradiction.

For n = 13 we have $ex(n, 3P_4) \ge {\binom{11}{2}} + {\binom{2}{2}} = 56$. It follows from the fact that $K_{11} \cup K_2$ does not contain $3P_4$. Let |E(G)| = 57. Applying Lemma 1, we obtain that

$$\frac{l2(l-1)}{2} + 1 \le 57,$$

$$l \le 10.$$

If $q \geq 12$, then there exists $3P_4$. If q = 11, then we have a cycle C_{11} and a path P_2 . But these two graphs cannot have edges between them and the total number of edges is equal to 56. So we must add one more edge and we obtain $3P_4$, a contradiction. If q = 10, then we have at most 45 edges in $G|_{V(C_{10})}$ and we need at least 12 more edges. We have 3 vertices outside C_{10} , say f_1, f_2, f_3 . If $\{f_1, f_2\} \in E(G)$, then $N(f_i) \cap V(C_{10}) = \emptyset$ for i = 1, 2,in the opposite case we get $3P_4$. Thus $\deg_{C_{10}}(f_i) \geq 4$ for some i = 1, 2, 3. Note that $\deg_{C_{10}}(f_i) \leq 5$, i = 1, 2, 3, in the opposite case we get C_{11} . If f_1 has 4 edges with C_{10} , then we must delete at least $\binom{4}{2} = 6$ edges from K_{10} . So we need 14 more edges. So $\deg_{C_{10}}(f_i) > 5$ and we have a contradiction.

FIGURE 5. Graphs with C_{10} for $ex(13, 3P_4)$.

Figure 5 presents a subgraph of G with the cycle C_{10} . Dotted lines denote edges in \overline{G} , in the opposite case we get a longer cycle in G.

For n = 14 we have $ex(n, 3P_4) \ge {\binom{11}{2}} + {\binom{3}{2}} = 58$. It follows from the fact that $K_{11} \cup K_3$ does not contain $3P_4$. Let |E(G)| = 59. Applying Lemma 1, we have

$$\frac{13(l-1)}{2} + 1 \le 59,$$

$$l \le 9.$$

If $q \geq 12$, then we have $3P_4$ in G. If q = 11, then we have 55 edges in K_{11} and 3 edges in K_3 and K_{11} and K_3 must be disjoint. But we have 58 edges so we must add one more edge and we obtain $3P_4$, a contradiction. Let q = 10. We have 45 edges in K_{10} and we need 14 more edges. We have 4 vertices outside C_{10} . So $\deg_{C_{10}}(f_i) > 3$ for some i = 1, 2, 3, 4. Moreover, $\deg_{C_{10}}(f_i) \leq 5$ for i = 1, 2, 3, 4, in the opposite case we get a cycle C_{11} . If f_1 creates 5 edges with the vertices of C_{10} , then we must delete 10 edges from K_{10} . So we need 19 more edges. But we have only 3 vertices in $V(F) - \{f_1\}$, so $\deg_{C_{10}}(f_1) = 4$ and $\deg_{C_{10}}(f_i) \leq 4$ for i = 2, 3, 4, then we must delete at least 6 edges from K_{10} . So we need 20 more edges. We have three vertices in $V(F) - \{f_1\}$. Hence $\deg_{C_{10}}(f_i) > 5$ for some i = 2, 3, 4 and we have a contradiction.

FIGURE 6. A graph with and C_9 for $ex(14, 3P_4)$.

Let q = 9. We have 36 edges in K_9 . So we need at least 23 edges outside $G|_{C_9}$. We have 5 vertices outside the cycle C_9 , i.e. in the graph F (see Figure 6 for an illustration). Recall that $ex(5, P_4) = 4$. So we have at least 19 edges between $V(C_9)$ and V(F). Thus there exists a vertex $f_i \in V(F)$, such that $\deg_{C_9}(f_i) \ge 4$. Note that $\deg_{C_9}(f_i) \le 4$ for any $f_i \in V(F)$, in the opposite case we get a cycle C_{10} . Let f_1 be the vertex adjacent to four vertices of C_9 . Then $G|_{C_9}$ is not isomorphic to K_9 , in the opposite case we get a longer cycle. We must delete from K_9 at least $\binom{4}{2} = 6$ edges (see dotted lines in Figure 6). So now we need at least 21 edges between $V(C_9)$

and V(F). But we have only 5 vertices in F. So there exists f_i for which $\deg_{C_a}(f_i) > 4$ and we have a contradiction.

Summarizing, we collect results from above remarks in Theorem 5.

Theorem 5. Let n be a natural number and $n \leq 14$. Then

$$ex(n, 3P_4) = \binom{n}{2} \text{ for } n \le 11,$$

$$ex(n, 3P_4) = \binom{11}{2} = 55 \text{ for } n = 12,$$

$$ex(n, 3P_4) = \binom{11}{2} + \binom{2}{2} = 56 \text{ for } n = 13,$$

$$ex(n, 3P_4) = \binom{11}{2} + \binom{3}{2} = 58 \text{ for } n = 14.$$

Theorems 4 and 5 present the Turán number $ex(n, 3P_4)$ for all positive integers n.

References

- Bushaw, N., Kettle, N., Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011), 837–853.
- [2] Erdős, P., Gallai, T., On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337–356.
- [3] Faudree, R. J., Schelp, R. H., Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975), 150–160.
- [4] Gorgol, I., Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011), 661–667.
- [5] Harary, F., Graph Theory, Addison-Wesley, Mass.-Menlo Park, Calif.-London, 1969.

Halina Bielak Institute of Mathematics Maria Curie-Skłodowska University pl. M. Curie-Skłodowskiej 1 20-031 Lublin Poland e-mail: hbiel@hektor.umcs.lublin.pl

Sebastian Kieliszek Institute of Mathematics Maria Curie-Skłodowska University pl. M. Curie-Skłodowskiej 1 20-031 Lublin Poland e-mail: sebastian.lukasz.kieliszek@gmail.com

Received June 4, 2013