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On inclusion relationships
of certain subclasses of meromorphic functions

involving integral operator

Abstract. In this paper, we introduce some subclasses of meromorphic func-
tions in the punctured unit disc. Several inclusion relationships and some
other interesting properties of these classes are discussed.

1. Introduction. Let M denote the class of functions f (z) of the form

(1.1) f(z) =
1

z
+
∞∑
k=0

ak z
k,

which are analytic in the punctured open unit disc

E∗ = {z : z ∈ C and 0 < |z| < 1} = E\{0}.

If f(z) is given by (1.1) and g(z) is given by

(1.2) g(z) =
1

z
+

∞∑
k=0

bkz
k,
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we define the Hadamard product (or convolution) of f(z) and g(z) by

(1.3) (f ? g) (z) =
1

z
+
∞∑
k=0

akbkz
k = (g ? f) (z) (z ∈ E) .

Let Pk(ρ) be the class of functions p(z) analytic in E with p(0) = 1 and

(1.4)

2π∫
0

∣∣∣∣Re p(z)− ρ
1− ρ

∣∣∣∣ dθ ≤ kπ, z = reiθ,

where k > 2 and 0 ≤ ρ < 1. This class was introduced by Padmanbhan et
al. in [16]. We note that Pk(0) = Pk, see [17], P2(ρ) = P (ρ), the class of
analytic functions with positive real part greater than ρ and P2(0) = P, the
class of functions with positive real part. From (1.4) we can easily deduce
that p(z) ∈ Pk(ρ) if and only if, there exists p1(z), p2(z) ∈ P (ρ) such that
for z ∈ E,

(1.5) p(z) =

(
k

4
+

1

2

)
p1(z)−

(
k

4
− 1

2

)
p2(z).

In recent years, several families of integral operators and differential opera-
tors were introduced using Hadamard product (or convolution). For exam-
ple, we choose to mention the Rushcheweyh derivative [18], the Carlson–
Shaffer operator [1], the Dziok–Srivastava operator [4], the Noor integral
operator [14], also see [3, 5, 6, 11]. Motivated by the work of N. E. Cho and
K. I. Noor [2, 9], we introduce a family of integral operators defined on the
space of meromorphic functions in the class M. By using these integral
operators, we define several subclasses of meromorphic functions and in-
vestigate various inclusion relationships and some other properties for the
meromorphic function classes introduced here.

For complex parameters α1, . . . , αq and β1, . . . , βs (βj∈C\Z−0 , j=1, . . . , s;
Z−0 = {0,−1,−2, . . . }) we now define the function φ(α1, . . . , αq;β1, . . . , βs; z)
by

φ(α1, . . . , αq;β1, . . . , βs; z) =
1

z
+
∞∑
k=0

(α1)k+1 . . . (αq)k+1

(β1)k+1 . . . (βs)k+1(k + 1)!
zk,

(q ≤ s+ 1; s ∈ N0 = N ∪ {0}; N = {1, 2, . . . }; z ∈ E),
where (v)k is the Pochhammer symbol (or shifted factorial) defined in

(terms of the Gamma function) by

(v)k =
Γ(v + k)

Γ(v)
=

{
1 if k = 0 and v ∈ C\{0}
v(v + 1) . . . (v + k − 1) if k ∈ N and v ∈ C.

Now we introduce the following operator

Ipµ(α1, . . . , αq, β1, . . . , βs) :M−→M
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as follows:
Let Fµ,p(z) = 1

z +
∑∞

k=0

(
k+µ+1
µ

)p
zk, p ∈ N0, µ 6= 0 and let F−1µ,p(z) be

defined such that

Fµ,p(z) ∗ F−1µ,p(z) = φ(α1, . . . , αq;β1, . . . , βs; z).

Then

(1.6) Ipµ(α1, . . . , αq, β1, . . . , βs)f(z) = F−1µ,p(z) ∗ f(z).

From (1.6) it can be easily seen

(1.7)

Ipµ(α1, . . . αq, β1, . . . βs)f(z)

=
1

z
+

∞∑
k=0

(
µ

k + µ+ 1

)p (α1)k+1 . . . (αq)k+1

(β1)k+1 . . . (βs)k+1(k + 1)!
akz

k.

For conveniences, we shall henceforth denote

(1.8) Ipµ(α1, . . . αq, β1, . . . βs)f(z) = Ipµ(α1, β1)f(z).

For the choices of the parameters p = 0, q = 2, s = 1, the operator
Ipµ(α1, β1)f(z) is reduced to an operator by N. E. Cho and K. I. Noor [2] and
K. I. Noor [9] and when p = 0, q = 2, s = 1, α1 = λ, α2 = 1, β1 = (n+ 1),
the operator Ipµ(α1, β1)f(z) is reduced to an operator recently introduced
by S.-M. Yuan et al. in [20].

It can be easily verified from the above definition of the operator Ipµ(α1, β1)
that

(1.9) z(Ip+1
µ (α1, β1)f(z))′ = µIpµ(α1, β1)f(z)− (µ+ 1)Ip+1

µ (α1, β1)f(z)

and

(1.10) z(Ipµ(α1, β1)f(z))′ = α1I
p
µ(α1 + 1, β1)f(z)− (α1 + 1)Ipµ(α1, β1)f(z).

By using the operator Ipµ(α1, β1), we now introduce the following subclasses
of meromorphic functions:

Definition 1.1 ([9]). A function f ∈ M is said to belong to the class
MRk(γ) for z ∈ E∗, 0 ≤ γ < 1, k ≥ 2, if and only if

−zf
′(z)

f(z)
∈ Pk(γ),

and f ∈MVk(γ), for z ∈ E∗, 0 ≤ γ < 1, k ≥ 2, if and only if

−(zf(z))′

f ′(z)
∈ Pk(γ).

We call f ∈MRk(γ) a meromorphic function with bounded radius rotation
of order γ and f ∈MVk(γ) a meromorphic function with bounded boundary
rotation.
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Definition 1.2. Let f ∈M, 0 ≤ γ < 1, k ≥ 2, z ∈ E∗. Then

f ∈MRpk,µ(α1, β1, γ) if and only if Ipµ(α1, β1)f ∈MRk(γ).

Also

f ∈MV p
k,µ(α1, β1, γ) if and only if Ipµ(α1, β1)f ∈MVk(γ), z ∈ E∗.

We observe that, for z ∈ E∗,
f ∈MV p

k,µ(α1, β1, γ)⇔ −zf ′ ∈MRpk,µ(α1, β1, γ).

Definition 1.3. Let λ ≥ 0, f ∈ M, p ∈ N0, 0 ≤ γ, ρ < 1, µ > 0 and
z ∈ E∗. Then f ∈ Bλ,p

k,µ(α1, β1, γ, ρ), if and only if there exists a function
g ∈MV p

2,µ(α1, β1, γ), such that{
(1− λ)

(Ipµ(α1, β1)f(z))′

(Ipµ(α1, β1)g(z))′
+ λ

[
−(z(Ipµ(α1, β1)f(z))′)′

(Ipµ(α1, β1)g(z))′

]}
∈ Pk(ρ).

In particular, for λ = 0 = p, k = q = µ = 2 and s = 1, we obtain the class
of meromorphic close-to-convex function, see [7], see also K. I. Noor [9]. For
λ = 1, p = 0, k = q = µ = 2, s = 1, we have the class of meromorphic
quasi-convex functions defined for z ∈ E∗. We note that the class C∗ of
quasi-convex univalent functions, analytic in E, was first introduced and
studied in [12], see also [13, 15].

In order to establish our main results, we need the following lemma, which
is properly known as the Miller–Mocanu Lemma.

Lemma 1.1 ([8]). Let u = u1 + iu2, v = v1 + iv2 and Ψ (u, v) be a complex
valued function satisfying the conditions:
(i) Ψ (u, v) is continuous in a domain D ⊂ C2,
(ii) (1, 0) ∈ D and Re Ψ (1, 0) > 0,
(iii) Re Ψ (iu2, v1) ≤ 0, whenever (iu2, v1) ∈ D and v1 ≤ −1

2

(
1 + u22

)
.

If h (z) = 1 + c1z + c2z
2 + · · · is a function analytic in E such that

(h(z), zh′(z)) ∈ D and Re(Ψ (h(z), zh′(z)) > 0 for z ∈ E, then Reh(z) > 0
in E.

2. Main results.

Theorem 2.1. Let Reα1 > 0, µ > 0 and 0 ≤ γ < 1. Then

MRpk,µ(α1 + 1, β1, γ) ⊂MRpk,µ(α1, β1, ρ) ⊂MRp+1
k,µ (α1, β1, η).

Proof. We prove the first part of the Theorem 2.1 and the second part
follows by using similar techniques. Let

f ∈MRpk,µ(α1 + 1, β1, γ), z ∈ E∗

and set

(2.1) −(Ipµ(α1, β1)f(z))′

(Ipµ(α1, β1)f(z))
=

(
k

4
+

1

2

)
h1(z)−

(
k

4
− 1

2

)
h2(z) = H(z).
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Simple computation together with (2.1) and (1.10) yields

(2.2) −(Ipµ(α1 + 1, β1)f(z))′

(Ipµ(α1 + 1, β1)f(z))
=

[
H(z) +

zH ′(z)

−H(z) + α1 + 1

]
∈Pk(γ), z ∈ E.

Let

Φα1(z) =
1

α1 + 1

[
1

z
+
∞∑
k=0

zk

]
+

α1

α1 + 1

[
1

z
+
∞∑
k=0

kzk

]
,

then

(2.3)

H(z) ∗ zΦα1(z) =

[
H(z) +

zH ′(z)

−H(z) + α1 + 1

]
=

(
k

4
+

1

2

)[
h1(z) +

zh′1(z)

−h1(z) + α1 + 1

]
−
(
k

4
− 1

2

)[
h2(z) +

zh′2(z)

−h2(z) + α1 + 1

]
.

Since f ∈MRpk,µ(α1 + 1, β1, γ), it follows from (2.2) and (2.3) that[
hi(z) +

zh′i(z)

−hi(z) + α1 + 1

]
∈ P (γ), i = 1, 2, z ∈ E.

Let hi(z) = (1− ρ)pi(z) + ρ. Then{
(1− ρ)pi(z) + ρ− γ +

(1− ρ)zp′i(z)

−(1− ρ)pi(z)− ρ+ α1 + 1

}
∈ P, z ∈ E.

We shall show that pi(z) ∈ P, i = 1, 2.
We form the functional Ψ(u, v) by taking u = u1 + iu2 = pi(z), v =

v1 + iv2 = zp′i(z). The first two conditions of Lemma 1.1 can be easily
verified. We need to verify condition (iii) as follows:

Ψ(u, v) =

{
(1− ρ)u+ ρ− γ +

(1− ρ)v

−(1− ρ)u− ρ+ α1 + 1

}
,

implies that

Re Ψ(iu2, v1) = ρ− γ +
(1− ρ)(α1 + 1− ρ)v1

(1− ρ)2u22 + (−ρ+ α1 + 1)2
.

By taking v1 ≤ −1
2(1 + u22), we have

Re Ψ(iu2, v1) ≤
A+Bu22

2C
,

where

A = 2(ρ− γ)(α1 + 1− ρ)2 − (1− ρ)(α1 + 1− ρ),

B = 2(ρ− γ)(1− ρ)2 − (1− ρ)(α1 + 1− ρ),

C = (α1 + 1− ρ)2 + (1− ρ)2u22 > 0.
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We note that Re Ψ(iu2, v1) ≤ 0 if and only if A ≤ 0 and B ≤ 0. From
A ≤ 0, we obtain

(2.4) ρ =
1

4

{
(3 + 2α1 + 2γ)−

√
(3 + 2α1 + 2γ)2 − 8

}
,

and B ≤ 0 gives us 0 ≤ ρ < 1.
Now using Lemma 1.1, we see that pi(z) ∈ P for z ∈ E, i = 1, 2 and

hence f ∈MRpk,µ(α1, β1, ρ) with ρ given by (2.4). �

In particular, we note that

ρ =
1

4

{
(3 + 2α1)−

√
(12α1 + 4α2

1) + 1

}
.

Theorem 2.2. Let Reα1, µ > 0. Then

MV p
k,µ(α1 + 1, β1, γ) ⊂MV p

k,µ(α1, β1, ρ) ⊂MV p+1
k,µ (α1, β1, η).

Proof. We observe that

f(z) ∈MV p
k,µ(α1 + 1, β1, γ)⇔ −zf ′(z) ∈MRpk,µ(α1 + 1, β1, γ)

⇒ −zf ′(z) ∈MRpk,µ(α1, β1, ρ)

⇔ f(z) ∈MV p
k,µ(α1, β1, ρ),

where ρ is given by (2.4).
The second part can be proved by means of similar arguments. �

Theorem 2.3. Let Reα1, µ > 0.Then

Bλ,p
k,µ(α1 + 1, β1, γ1, ρ1) ⊂ Bλ,p

k,µ(α1, β1, γ2, ρ2) ⊂ Bλ,p+1
k,µ (α1, β1, γ3, ρ3),

where γi = γi(ρi, µ), i = 1, 2, 3 are given in the proof.

Proof. We prove the first inclusion of this result and the other part follows
along similar lines.

Let f ∈ Bλ,p
k,µ(α1 + 1, β1, γ1, ρ1). Then by Definition 1.3, there exists a

function g ∈MV p
2,µ(α1 + 1, β1, γ1) such that

(2.5)

{
(1− λ)

(Ipµ(α1 + 1, β1)f(z))′

(Ipµ(α1 + 1, β1)g(z))′

+ λ

[
−(z(Ipµ(α1 + 1, β1)f(z))′)′

(Ipµ(α1 + 1, β1)g(z))′

]}
∈ Pk(ρ1).

Set

(2.6) h(z) =

{
(1− λ)

(Ipµ(α1, β1)f(z))′

(Ipµ(α1, β1)g(z))′
+ λ

[
−(z(Ipµ(α1, β1)f(z))′)′

(Ipµ(α1, β1)g(z))′

]}
,

where h(z) is an analytic function in E with h(0) = 1.



On inclusion relationships of certain subclasses of meromorphic functions... 69

Now, g ∈MV p
2,µ(α1 + 1, β1, γ1) ⊂MV p

2,µ(α1, β1, γ2), where γ2 is given by
the equation

(2.7) 2γ22 + (3 + 2α1 − 2γ1)γ2 − {2γ1(1 + α1) + 1} = 0.

Therefore,

q(z) = −(zIpµ(α1, β1)g(z))′

(Ipµ(α1, β1)g(z))′
∈ P (γ2), z ∈ E.

By using (1.10), (2.5), (2.6) and (2.7), we have

(2.8)
{
h(z) +

λzh′(z)

−q(z) + α1 + 1

}
∈ Pk(ρ1), q(z) ∈ P (γ2), z ∈ E.

With

h(z) =

(
k

4
+

1

2

)
[(1− ρ2)h1(z) + ρ2]−

(
k

4
− 1

2

)
[(1− ρ2)h2(z) + ρ2],

(2.8) can be written as(
k

4
+

1

2

){
(1− ρ2)h1(z) + ρ2 +

(1− ρ2)λzh′1(z)
−q(z) + α1 + 1

}
−
(
k

4
− 1

2

){
(1− ρ2)h2(z) + ρ2 +

(1− ρ2)λzh′2(z)
−q(z) + α1 + 1

}
,

where{
(1− ρ2)hi(z) + ρ2 +

(1− ρ2)λzh′i(z)
−q(z) + α1 + 1

}
∈ P (ρ1), z ∈ E, i = 1, 2.

That is{
(1− ρ2)hi(z) + ρ2 − ρ1 +

(1− ρ2)λzh′i(z)
−q(z) + α1 + 1

}
∈ P, z ∈ E, i = 1, 2.

We form the functional Ψ(u, v) by choosing u = u1 + iu2 = hi(z), v =
v1 + iv2 = zh′i(z), and

Ψ(u, v) =

{
(1− ρ2)u+ ρ2 − ρ1 +

(1− ρ2)λv
−q(z) + α1 + 1

}
, (q = q1 + iq2).

The first two conditions of Lemma 1.1 are clearly satisfied. We verify (iii),
with v1 ≤ −1

2(1 + u22) as follows:

Re Ψ(iu2, v1) = ρ2 − ρ1 + Re

{
λ(1− ρ2)v1{(−q1 + α1 + 1) + iq2}

(−q1 + α1 + 1)2 + q22

}
≤ 2(ρ2 − ρ1) |−q + α1 + 1|2 − λ(1− ρ2){(−q1 + α1 + 1)(1 + u22)

2 |−q + α1 + 1|2

=
A+Bu22

2C
≤ 0,
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if A ≤ 0 and B ≤ 0, where

A = 2(ρ2 − ρ1) |−q + α1 + 1|2 − λ(1− ρ2){(−q1 + α1 + 1),

B = −λ(1− ρ2){(−q1 + α1 + 1) ≤ 0,

C = |−q + α1 + 1|2 > 0.

From A ≤ 0, we obtain

ρ2 =
2ρ1 |−q + α1 + 1|2 + λRe(−q(z) + α1 + 1)

2 |−q + α1 + 1|2 + λRe(−q(z) + α1 + 1)
.

Hence, using Lemma 1.1, it follows that h(z), defined by (2.6), belongs to
Pk(ρ2) and thus f ∈ Bλ,p

k,µ(α1, β1, γ2, ρ2) for z ∈ E∗. This completes the
proof of the first part. The second part of this result can be obtained by
using similar techniques and the relation (1.9). �

Theorem 2.4. Let Reα1, µ > 0. Then
(i) Bλ,p

k,µ(α1, β1, γ, ρ) ⊂ B0,p
k,µ(α1, β1, γ, ρ4).

(ii) Bλ1,p
k,µ (α1, β1, γ, ρ) ⊂ Bλ2,p

k,µ (α1, β1, γ, ρ), for 0 ≤ λ2 < λ1.

Proof. (i). Let

h(z) =
(Ipµ(α1, β1)f(z))′

(Ipµ(α1, β1)g(z))′
,

h(z) is analytic in E and h(0) = 1. Then

(2.10)

{
(1− λ)

(Ipµ(α1, β1)f(z))′

(Ipµ(α1, β1)g(z))′
+ λ

[
−(z(Ipµ(α1, β1)f(z))′)′

(Ipµ(α1, β1)g(z))′

]}
= h(z) + λ

zh′(z)

−h0(z)
,

where

h0(z) = −(z(Ipµ(α1, β1)f(z))′)′

(Ipµ(α1, β1)g(z))′
∈ P (γ).

Since f ∈ Bλ,p
k,µ(α1, β1, γ, ρ), it follows that[
h(z) + λ

zh′(z)

−h0(z)

]
∈ Pk(ρ), h0 ∈ P (γ), for z ∈ E.

Let

h(z) =

(
k

4
+

1

2

)
h1(z)−

(
k

4
− 1

2

)
h2(z).

Thus (2.10) implies that[
hi(z) + λ

zh′i(z)

−h0(z)

]
∈ P (ρ), z ∈ E, i = 1, 2.
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and using similar techniques, together with Lemma 1.1, it follows that
hi(z) ∈ P (ρ4), i = 1, 2, where

ρ4 =
2ρ |h0(z)|2 + λReh0(z)

2 |h0(z)|2 + λReh0(z)
.

Therefore h(z) ∈ Pk(ρ4), and f ∈ B0,p
k,µ(α1, β1, γ, ρ4), for z ∈ E∗. In partic-

ular, it can be shown that hi(z) ∈ P (ρ), i = 1, 2. Consequently h ∈ Pk(ρ)

and f ∈ B0,p
k,µ(α1, β1, γ, ρ) in E∗.

For λ2 = 0, we have part (i). Therefore, we let λ2 > 0 and f ∈
Bλ1,p
k,µ (α1, β1, γ, ρ). There exist two functions H1(z), H2(z) ∈ Pk(ρ) such

that{
(1− λ1)

(Ipµ(α1 + 1, β1)f(z))′

(Ipµ(α1 + 1, β1)g(z))′
+ λ1

[
−(z(Ipµ(α1 + 1, β1)f(z))′)′

(Ipµ(α1 + 1, β1)g(z))′

]}
= H1(z)

(Ipµ(α1 + 1, β1)f(z))′

(Ipµ(α1 + 1, β1)g(z))′
= H2(z),

where g(z) ∈MV p
2,µ(α1, β1, γ).

Now

(2.11)

{
(1− λ2)

(Ipµ(α1 + 1, β1)f(z))′

(Ipµ(α1 + 1, β1)g(z))′
+λ2

[
−(z(Ipµ(α1 + 1, β1)f(z))′)′

(Ipµ(α1 + 1, β1)g(z))′

]}
=
λ2
λ1
H1(z) +

(
1− λ2

λ1

)
H2(z).

Since the class Pk(ρ) is convex, see [10], it follows that the right hand side
of (2.11) belongs to Pk(ρ) and this shows that f ∈ Bλ2,p

k,µ (α1, β1, γ, ρ) for
z ∈ E∗. This completes the proof. �

Inclusion properties involving the integral operator Fc. Consider
the operator Fc, defined by

(2.12) Fc(f)(z) =
c

zc+1

z∫
0

tcf(t)dt (f ∈M; c > 0).

From the Definition of Fc defined by (2.12), we observe that

(2.13) z((Ipµ(α1, β1)Fcf(z))′ = c(Ipµ(α1, β1)f(z)− (c+ 1)(Ipµ(α1, β1)Fcf(z).

Using (2.12), (2.13) with similar arguments as used earlier, we can prove
the following theorem.

Theorem 2.5. Let f ∈ MRpk,µ(α1, β1, γ) or f ∈ MV p
k,µ(α1, β1, γ) or f ∈

Bλ,p
k,µ(α1, β1, γ, ρ), for z ∈ E. Then Fc(f) defined by (2.12) is also in the

same class for z ∈ E∗.
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