ANNA BEDNARSKA

The vertical prolongation of the projectable connections

Abstract

We prove that any first order $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-natural operator transforming projectable general connections on an ($m_{1}, m_{2}, n_{1}, n_{2}$)-dimensional fibred-fibred manifold $p=(p, \underline{p}):\left(p_{Y}: Y \rightarrow \underline{Y}\right) \rightarrow\left(p_{M}: M \rightarrow \underline{M}\right)$ into general connections on the vertical prolongation $V Y \rightarrow M$ of $p: Y \rightarrow M$ is the restriction of the (rather well-known) vertical prolongation operator \mathcal{V} lifting general connections $\bar{\Gamma}$ on a fibred manifold $Y \rightarrow M$ into $\mathcal{V} \bar{\Gamma}$ (the vertical prolongation of $\bar{\Gamma}$) on $V Y \rightarrow M$.

The aim of this paper is to describe all $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-natural operators transforming projectable general connections on an ($m_{1}, m_{2}, n_{1}, n_{2}$)dimensional fibred-fibred manifolds into general connections on the vertical prolongation $V Y \rightarrow M$ of $p: Y \rightarrow M$. The similar problem for the case of fibred manifolds was solving in [7]. In the paper [1], authors described natural operators transforming connections on fibred manifolds $Y \rightarrow M$ into connections on $V Y \rightarrow M$.

A fibred-fibred manifold is a fibred surjective submersion

$$
p=(p, \underline{p}):\left(p_{Y}: Y \rightarrow \underline{Y}\right) \rightarrow\left(p_{M}: M \rightarrow \underline{M}\right)
$$

between two fibred manifolds $p_{Y}: Y \rightarrow \underline{Y}$ and $p_{M}: M \rightarrow \underline{M}$ covering $\underline{p}: \underline{Y} \rightarrow \underline{M}$ such that the restrictions of p to the fibres are submersions.
 i.e. a commutative square diagram with arrows being surjective submersions

[^0]$p: Y \rightarrow M, p_{Y}: Y \rightarrow \underline{Y}, p_{M}: M \rightarrow \underline{M}$ and $\underline{p}: \underline{Y} \rightarrow \underline{M}$ such that the system $\left(p, p_{Y}\right): Y \rightarrow M \times_{M} \underline{Y}$ of maps p and p_{Y} is a submersion, [2], [6].

If $p^{1}=\left(p^{1}, \underline{p}^{1}\right):\left(p_{Y^{1}}^{1}: Y^{1} \rightarrow \underline{Y}^{1}\right) \rightarrow\left(p_{M^{1}}^{1}: M^{1} \rightarrow \underline{M}^{1}\right)$ is another fibredfibred manifold, then a fibred-fibred map $f: Y \rightarrow Y^{1}$ is the system $f=$ $\left(f, f_{1}, f_{2}, \underline{f}\right)$ of four maps $f: Y \rightarrow Y^{1}, f_{1}: \underline{Y} \rightarrow \underline{Y}^{1}, f_{2}: M \rightarrow M^{1}$ and $\underline{f}: \underline{M} \rightarrow \underline{M}^{1}$ such that the relevant cubic diagram is commutative.

A fibred-fibred manifold $p=(p, \underline{p}):\left(p_{Y}: Y \rightarrow \underline{Y}\right) \rightarrow\left(p_{M}: M \rightarrow \underline{M}\right)$ is of the dimension $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$ if ${ }^{-} \operatorname{dim} Y=m_{1}+m_{2}+n_{1}+n_{2}, \operatorname{dim} M=$ $m_{1}+m_{2}, \operatorname{dim} \underline{Y}=m_{1}+n_{1}$ and $\operatorname{dim} \underline{M}=m_{1}$. All fibred-fibred manifolds of the dimension ($m_{1}, m_{2}, n_{1}, n_{2}$) and their all local fibred-fibred diffeomorphisms form the local admissible category over manifolds in the sense of [3], which we denote by $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$. Any $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object is locally isomorphic to the trivial fibred square $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ with vertices $\mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}} \times \mathbb{R}^{n_{1}} \times \mathbb{R}^{n_{2}}, \mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}, \mathbb{R}^{m_{1}} \times \mathbb{R}^{n_{1}}, \mathbb{R}^{m_{1}}$ and arrows being obvious projections.

The vertical functor $V: \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow \mathcal{F M}$ (on ($m_{1}, m_{2}, n_{1}, n_{2}$)dimensional fibred-fibred manifolds) is the usual vertical functor $V: \mathcal{F M} \rightarrow$ $\mathcal{F M}$ on fibred manifolds, where $\mathcal{F M}$ is the category of all fibred manifolds and their morphisms. More precisely, $V: \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow \mathcal{F M}$ is the functor assigning to any ($m_{1}, m_{2}, n_{1}, n_{2}$)-dimensional fibred-fibred manifold $p=(p, \underline{p}):\left(p_{Y}: Y \rightarrow \underline{Y}\right) \rightarrow\left(p_{M}: M \rightarrow \underline{M}\right)$ the vertical bundle $V Y \rightarrow Y$ of the corresponding fibred manifold $p: Y \rightarrow M$ and to any $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-map $f=\left(f, f_{1}, f_{2}, \underline{f}\right)$ between $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$-dimensional fibred-fibred manifolds $p=(p, \underline{p}):\left(p_{Y}: Y \rightarrow \underline{Y}\right) \rightarrow\left(p_{M}: M \rightarrow \underline{M}\right)$ and $p^{1}=\left(p^{1}, \underline{p}^{1}\right):\left(p_{Y^{1}}^{1}: Y^{1} \rightarrow \underline{Y}^{1}\right) \rightarrow\left(p_{M^{1}}^{1}: M^{1} \rightarrow \underline{M}^{1}\right)$ the vertical prolongation $V f: V Y \rightarrow V Y^{1}$ of the corresponding fibred map $f=\left(f, f_{2}\right)$ between corresponding fibred manifolds $p: Y \rightarrow M$ and $p^{1}: Y^{1} \rightarrow M^{1}$. Obviously, $V: \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow \mathcal{F M}$ is a bundle functor in the sense of [3].

A projectable general connection on a fibred-fibred manifold $p=(p, \underline{p})$: $\left(p_{Y}: Y \rightarrow \underline{Y}\right) \rightarrow\left(p_{M}: M \rightarrow \underline{M}\right)$ is a pair $\Gamma=(\bar{\Gamma}, \underline{\Gamma})$ of general connections $\bar{\Gamma}: Y \times{ }_{M} T M \rightarrow T Y$ and $\underline{\Gamma}: \underline{Y} \times \underline{\underline{M}} T \underline{M} \rightarrow T \underline{Y}$ on fibred manifolds $p: Y \rightarrow M$ and $\underline{p}: \underline{Y} \rightarrow \underline{M}$, respectively, such that $T p_{Y} \circ \bar{\Gamma}=\underline{\Gamma} \circ\left(p_{Y} \times_{p_{M}} T p_{M}\right),[3]$, [5].

The vertical prolongation $\mathcal{V} \Gamma$ of a projectable general connection $\Gamma=$ $(\bar{\Gamma}, \underline{\Gamma})$ on an $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object $p=(p, \underline{p}):\left(p_{Y}: Y \rightarrow \underline{Y}\right) \rightarrow\left(p_{M}: M \rightarrow\right.$ $\underline{M})$ is the vertical prolongation $\mathcal{V} \bar{\Gamma}$ on $V Y \rightarrow M$ of the corresponding general connection $\bar{\Gamma}$ on the corresponding fibred manifold $p: Y \rightarrow M$. (The vertical prolongation of a general connection $\bar{\Gamma}$ on a fibred manifold $Y \rightarrow M$ is the general connection $\mathcal{V} \bar{\Gamma}$ on $V Y \rightarrow M$ as in Section 31.1 in [3]. The vertical prolongation of connections on fibred manifolds was also described in [4].)

The general concept of natural operator can be found in [3]. In particular, an $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-natural operator D transforming projectable general connections $\Gamma=(\bar{\Gamma}, \underline{\Gamma})$ on an ($m_{1}, m_{2}, n_{1}, n_{2}$)-dimensional fibred-fibred manifold $p=(p, \underline{p}):\left(p_{Y}: Y \rightarrow \underline{Y}\right) \rightarrow\left(p_{M}: M \rightarrow \underline{M}\right)$ into general connections $D(\Gamma)$ on $V \bar{Y} \rightarrow M$ is a family of $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-invariant regular operators

$$
D: \operatorname{Con}_{p r o j}(Y \rightarrow M) \rightarrow \operatorname{Con}(V Y \rightarrow M)
$$

 where $\operatorname{Con}_{\text {proj }}(Y \rightarrow M)$ is the set of all projectable general connections on $p=(p, \underline{p})$ and $\operatorname{Con}(V Y \rightarrow M)$ is the set of all general connections on $V Y \rightarrow$ M. The $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-invariance means that if $\Gamma \in \operatorname{Con}_{p r o j}(Y \rightarrow M)$ and $\Gamma^{1} \in \operatorname{Con}_{\text {proj }}\left(Y^{1} \rightarrow M^{1}\right)$ are f-related by $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-map $f: Y \rightarrow Y^{1}$ (i.e. $T f \circ \Gamma=\Gamma^{1} \circ\left(f \times T f_{2}\right)$), then $D(\Gamma)$ and $D\left(\Gamma^{1}\right)$ are $V f$-related (i.e. $\left.T V f \circ D(\Gamma)=D\left(\Gamma^{1}\right) \circ\left(f \times T f_{2}\right)\right)$. The regularity for D means that D transforms smoothly parametrized families of connections into smoothly parametrized families of connections.

Thus (by the canonical character of the vertical prolongation of projectable general connections) the family \mathcal{V} of operators

$$
\mathcal{V}: \operatorname{Con}_{\text {proj }}(Y \rightarrow M) \rightarrow \operatorname{Con}(V Y \rightarrow M), \quad \mathcal{V}(\Gamma):=\mathcal{V} \bar{\Gamma}
$$

for all $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-objects $p=(p, \underline{p}):\left(p_{Y}: Y \rightarrow \underline{Y}\right) \rightarrow\left(p_{M}: M \rightarrow \underline{M}\right)$ is an $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-natural operator.

One can verify that \mathcal{V} is the first order operator (it means that if $\Gamma, \Gamma^{1} \in$ $\operatorname{Con}_{\text {proj }}(Y \rightarrow M)$ have the same 1-jets $j_{x}^{1}(\Gamma)=j_{x}^{1}\left(\Gamma^{1}\right)$ at $x \in M$, then it holds $\mathcal{V}(\Gamma)=\mathcal{V}\left(\Gamma^{1}\right)$ over $\left.x\right)$.

Theorem 1. The operator \mathcal{V} is the unique first order $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$ natural operator transforming projectable general connections on (m_{1}, m_{2}, $\left.n_{1}, n_{2}\right)$-dimensional fibred-fibred manifolds $p=(p, \underline{p}):\left(p_{Y}: Y \rightarrow \underline{Y}\right) \rightarrow$ $\left(p_{M}: M \rightarrow \underline{M}\right)$ into general connections on $V Y \rightarrow M$.

For $j=1, \ldots, m_{2}, s=1, \ldots, n_{2}$ we put $[j]:=m_{1}+j$ and $\langle s\rangle:=n_{1}+s$.
Let $x^{i}, x^{[j]}, y^{q}, y^{<s>}$ be the usual coordinates on the trivial fibred square $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$.

Lemma 1. Let $\Gamma=(\bar{\Gamma}, \underline{\Gamma})$ be a projectable general connection on an (m_{1}, $\left.m_{2}, n_{1}, n_{2}\right)$-dimensional fibred-fibred manifold $p=(p, p):\left(p_{Y}: Y \rightarrow \underline{Y}\right) \rightarrow$ $\left(p_{M}: M \rightarrow \underline{M}\right)$ and let $y_{0} \in Y$ be a point. Then there exists an $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-chart ψ on Y satisfying conditions $\psi\left(y_{0}\right)=(0,0,0,0)$ and $j_{(0,0,0,0)}^{1} \psi_{*} \Gamma=j_{(0,0,0,0)}^{1} \widetilde{\Gamma}$, where

$$
\begin{align*}
\widetilde{\Gamma}= & \sum_{i=1}^{m_{1}} d x^{i} \otimes \frac{\partial}{\partial x^{i}}+\sum_{j=1}^{m_{2}} d x^{[j]} \otimes \frac{\partial}{\partial x^{[j]}} \\
& +\sum_{i_{1}, i_{2}=1}^{m_{1}} \sum_{q=1}^{n_{1}} A_{i_{1} i_{2}}^{q} x^{i_{1}} d x^{i_{2}} \otimes \frac{\partial}{\partial y^{q}}+\sum_{i_{1}, i_{2}=1}^{m_{1}} \sum_{s=1}^{n_{2}} B_{i_{1} i_{2}}^{s} x^{i_{1}} d x^{i_{2}} \otimes \frac{\partial}{\partial y^{<s>}} \tag{1}\\
& +\sum_{i=1}^{m_{1}} \sum_{j=1}^{m_{2}} \sum_{s=1}^{n_{2}} C_{i j}^{s} x^{i} d x^{[j]} \otimes \frac{\partial}{\partial y^{<s>}}+\sum_{i=1}^{m_{1}} \sum_{j=1}^{m_{2}} \sum_{s=1}^{n_{2}} D_{j i}^{s} x^{[j]} d x^{i} \otimes \frac{\partial}{\partial y^{<s>}} \\
& +\sum_{j_{1}, j_{2}=1}^{m_{2}} \sum_{s=1}^{n_{2}} E_{j_{1} j_{2}}^{s} x^{\left[j_{1}\right]} d x^{\left[j_{2}\right]} \otimes \frac{\partial}{\partial y^{<s>}}
\end{align*}
$$

for some real numbers $A_{i_{1} i_{2}}^{q}, B_{i_{1} i_{2}}^{s}, C_{i j}^{s}, D_{j i}^{s}$ and $E_{j_{1} j_{2}}^{s}$ satisfying

$$
\begin{equation*}
A_{i_{1} i_{2}}^{q}=-A_{i_{2} i_{1}}^{q}, B_{i_{1} i_{2}}^{s}=-B_{i_{2} i_{1}}^{s}, C_{i j}^{s}=-D_{j i}^{s}, \quad E_{j_{1} j_{2}}^{s}=-E_{j_{2} j_{1}}^{s} \tag{2}
\end{equation*}
$$

for $i, i_{1}, i_{2}=1, \ldots, m_{1}, j, j_{1}, j_{2}=1, \ldots, m_{2}, q=1, \ldots, n_{1}, s=1, \ldots, n_{2}$.
Proof. Choose a projectable torsion-free classical linear connection ∇ on $p_{M}: M \rightarrow \underline{M}$, i.e. a torsion-free classical linear connection ∇ on M such that there exists a unique classical linear connection $\underline{\nabla}$ on \underline{M} which is p_{M}-related with ∇. By Lemma 4.2 [5], there exists an $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-chart ψ on Y covering a ∇-normal fiber coordinate system on M with the center $x_{0} \equiv$ $p\left(y_{0}\right)$ such that $\psi\left(y_{0}\right)=(0,0,0,0)$ and such that $j_{(0,0,0,0)}^{1}\left(\psi_{*} \Gamma\right)=j_{(0,0,0,0)}^{1} \widetilde{\Gamma}$, where $\widetilde{\Gamma}$ means (1) for some real numbers: $A_{i_{1} i_{2}}^{q}, B_{i_{1} i_{2}}^{s}, C_{i j}^{s}, D_{j i}^{s}$ and $E_{j_{1} j_{2}}^{s}$ satisfying the condition (2) for $i, i_{1}, i_{2}=1, \ldots, m_{1}, j, j_{1}, j_{2}=1, \ldots, m_{2}$, $q=1, \ldots, n_{1}, s=1, \ldots, n_{2}$.

Using Lemma 1, one can prove Theorem 1 as follows.
Proof. Let D be an $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-natural operator of the first order. Put $\nabla(\Gamma):=D(\Gamma)-\mathcal{V}(\Gamma): V Y \rightarrow T^{*} M \otimes V(V Y)$. It is sufficient to prove that it holds $\nabla(\Gamma)=0$. Because of Lemma 1, the first order of Δ and invariance of ∇ with respect to charts of the fibred-fibred manifold, it is sufficient to prove that $\left\langle\Delta(\Gamma)_{\mid v}, u\right\rangle=0$ for any $u \in T_{(0,0)}\left(\mathbb{R}^{m_{1}} \times \mathbb{R}^{m_{2}}\right)$, any $v \in\left(V \mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)_{(0,0,0,0)}$ and any projectable general connection Γ on $\mathbb{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ of the form (1) for any real numbers $A_{i_{1} i_{2}}^{q}, B_{i_{1} i_{2}}^{s}, C_{i j}^{s}, D_{j i}^{s}$ and $E_{j_{1} j_{2}}^{s}$ satisfying (2) for $i, i_{1}, i_{2}=1, \ldots, m_{1}, j, j_{1}, j_{2}=1, \ldots, m_{2}, q=$ $1, \ldots, n_{1}, s=1, \ldots, n_{2}$. Using the invariance of Δ with respect to the base homotheties $\left(t x^{i}, t x^{[j]}, y^{q}, y^{<s>}\right)$ for $t>0$, we obtain the condition of homogeneity of the form

$$
\left\langle\Delta\left(\Gamma^{t}\right)_{\mid v}, u\right\rangle=t\left\langle\Delta(\Gamma)_{\mid v}, u\right\rangle
$$

where Γ^{t} means Γ with the coefficients $t^{2} A_{i_{1} i_{2}}^{q}, t^{2} B_{i_{1} i_{2}}^{s}, t^{2} C_{i j}^{s}, t^{2} D_{j i}^{s}, t^{2} E_{j_{1} j_{2}}^{s}$ instead of $A_{i_{1} i_{2}}^{q}, B_{i_{1} i_{2}}^{s}, C_{i j}^{s}, D_{j i}^{s}, E_{j_{1} j_{2}}^{s}$.

By the homogeneous function theorem this type of homogeneity yields directly that $\left\langle\Delta(\Gamma)_{\mid v}, u\right\rangle=0$.

In case of $m_{1}=m, n_{1}=n, m_{2}=0, n_{2}=0$ we have $\mathcal{F}^{2} \mathcal{M}_{m, 0, n, 0}=$ $\mathcal{F} \mathcal{M}_{m, n}$, the category of the (m, n)-dimensional fibred manifolds and their local fibre diffeomorphisms. In this case, the projectable general connections are the general connections.

Corollary 1. The operator \mathcal{V} is a unique $\mathcal{F} \mathcal{M}_{m, n}$-natural operator of the first order transforming the general connections on an (m, n)-dimensional fibred manifold $p: Y \rightarrow M$ into the general connections on $V Y \rightarrow M$.

References

[1] Doupovec, M., Mikulski, W. M., On the existence of prolongation of connections, Czechoslovak Math. J., 56 (2006), 1323-1334.
[2] Koláŕ, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska Sect. A 59 (2005), 67-76.
[3] Kolář, I., Michor, P. W. and Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
[4] Kolář, I., Mikulski, W. M., Natural lifting of connections to vertical bundles, The Proceedings of the 19th Winter School "Geometry and Physics" (Srní, 1999). Rend. Circ. Mat. Palermo (2) Suppl. No. 63 (2000), 97-102.
[5] Kurek, J., Mikulski, W. M., On prolongations of projectable connections, Ann. Polon. Math, 101 (2011), no. 3, 237-250.
[6] Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (2001), no. 3-4, 441-458.
[7] Kolář, I., Some natural operations with connections, J. Nat. Acad. Math. India 5 (1987), no. 2, 127-141.

Anna Bednarska

Institute of Mathematics
Maria Curie-Skłodowska University
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin
Poland
e-mail: bednarska@hektor.umcs.lublin.pl
Received June 15, 2011

[^0]: 2000 Mathematics Subject Classification. Primary 58A20, Secondary 58A32.
 Key words and phrases. Fibred-fibred manifold, natural operator, projectable connection.

