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Two-Dimensional Stability of Nonlinear
Exponential Schrédinger Waves

We consider the two-dimensional exponential nonlinear Schrédinger equation
i+ Viu+afl —eMu=0. (1)

One-dimensional version of this equation has been introduced recently to
nonlinear plasma physics by D’Evelyn and Morales [1], Kaw et al [2]
Sheering and Ong [3] and to nonlinear optics by Murawski and Koper [4].

Transverse stability of solutions of the exponential nonlinear Schrodinger
equation has been studied by several authors [5-9]. Particularly, Infeld and
Ziemkiewicz [5] have shown that all stationary entities are unstable with respect
to two dimensional perturbations. The authors consider only a case of the positive
value of a. This case corresponds to periodic waves and a soliton as solutions
of equation (1). A variation of action method has been applied by Anderson,
Bondeson, Lisak [6] to find that the solitons are stable for all transverse wave
numbers k > k., where k. is the so-called cut-off wavenumber. In contrast to one-
-dimensional solutions, which are always transversely unstable (existence of the
cut-off), there exist completely stable 3-dimensional solutions of the vectorial ex-
ponential nonlinear Schrodinger equation if the wave amplitude exceeds a critical
threshold. The solutions are also stable with respect to perturbations which de-
pend on the radius only, but for azimuthally dependent perturbations instability
exists. These results have been checked by Laedke and Spatschek [7,9] to
prove fairly good agreement. A Liapunov functional method has been used by
Blaha, Laedke, Spatschek [9] to assert that the solutions of the scalar ex-
ponential nonlinear Schrodinger equation are two-dimensionally completely stable.
The corresponding formulae are easily obtained by the estimation of those for the
one-dimensional case. See Murawski [10] for the corresponding calculations for
other equations.
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In this paper we will apply Infeld-Rowlands [11] method for the nonlinear
exponential Schrodinger equation. Wherever possible the obtained results will be
compared with those for the nonlinear Schrédinger equation obtained by Infeld
and Rowlands [11] and for the nonlinear exponential Schrédinger equation by
Infeld and Ziemkiewicz [5]. The latter authors have studied only a family of
solutions which contain the soliton solution.

We now lood for stationary envelope solutions

u= UO(E) ei(cX/2+bt)’ (2)
where £ = z — ct. Equation (1) leads to .
Uge — Pug — auge™™% = 0, (3)

where we defined .

c
=b+—-a.
pP=0+ 7 °
Upon integration of equation (3) multiplied by uge we get
u?,‘ = pul - ae~ve + pl = Y (uo), (4)

Here ! is another integration constant.

The qualitative nature of the solution of the equation may be determined from
consideration of the function Y (1) which should be bounded for bounded uo and
must possess double roots. It holds when

Y'(UO) = Y(UO) =0.
Hence, we find the condition for a and p:
pa<0, pla+p)<0 (5)

and values of [ corresponding to the double roots:
. = mi 2 m(=-2)-
lmin,maz = Min, max { p,ln ( a) 1} . (6)

We consider now the case of @ > 0 assuming that the conditions (5) are fullfiled.
We call this case the ‘soliton’ case. For | = [, and | = [,,;;, we have linear
waves and solitons as solutions of equation (4). There are periodic waves both for
lnaz > 1 > lmin and | < lpin.

A second case we will take into consideration is for & > 0 and

p <0, p(a+p)>0. (7)
For 1 > % there is a range of periodic waves as solution of equation (4). For
1= % there is a linear wave. If conditions (5) are satisfied we have a range of
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periodic waves for l,;n < | < lpar. For | = 4 there are the linear wave and
shock-wave, respectively. We call this case the ‘shock-wave’ case.

A third case we discuss here is for a > 0 and p < 0. For 1 = a/p there is
a linear wave and for 1 > a/p there are periodic waves only. We call this case the
‘periodic-wave’ case.

We superimpose a small disturbance of envelope with a long wavelength and
small amplitude upon the steady state given by equation (4):

u = |uo(€) + 6uy () elhré+kaytur) 6u2(€)e—i(h£+hy+w°") et(cX/2+bt) (8)
Here, we introduced coordinates of the moving frame
E=z—ct, T=1t, 9)
and
ky = kcos¢, ky = ksing,

where ¢ is an angle between the wavevector k and the z axis. The star denotes
a complex conjugate. Substituting (8) into (1) and dropping nonlinear terms, we
find

Léuy — wbu_ + 2ik 8uye — k26uy =0, (10)

Léu_ — wbuy + 2ik16u_g — k*6u_ =0, (11)
where the following notation is used: .

3
Yo

L=6g—p—ae' ,

L=L+ 2au§e"“g,
buy = buy + 6uy,

and where the asterisk denotes the complex conjugate. In further calculations we
assume k to be small (with respect to a wavelength of the basic wave) and use the
following expansion

w=kw + kw4, (12)
Suy = buyo + kbuyy + -+, (13)
Su_ = K(bu_o+ kéu_, +--). (14)

Here K, is an arbitrary constant. The discussion of expansion (12) is presented
by Infeld and Rowlands (11].

From the zeroth-and first-order equations in k, after an elimination of secular
terms, we obtain

bu_y = o, (15)

6U+0 = ‘uog, (16)
2icos gl —w

bu_y = uo+ —-—;:’K—.I'PO. (17)

.
Sujo = woe+ %(2cos¢ +iwkK)Qo + “"T‘QZ, (18)
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where:

d.
'U-g/ é = nlug + Po(€),

e -
uog/ Ugi = PEuo¢ + Qo(£),
2
Uos/ 1132:15 = r€uor + Q2(§).

3

Here, Py, Qo and @ are periodic functions with the same period as the nonlinear
wave YA.
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Fig. 1. A maximum value of the imaginary root of the dispersion relation plotted versus the
parameter ! and an angle ¢, which changes between 0 and . Here a = 1, b = 0.25, ¢ = 1 and

Imar < { < lpiin. The smallest value of | corresponds to the soliton. A case of small amplitude

waves
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Fig. 2. As for Fig. 1, but | < Imaz. The largest value of | corresponds to the soliton
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From the second-order in &, we find

2i cos ¢(UO£6‘U+1) —wll((uo(6u_1) - (Ugf) = 0, (22)
. W) 2 \
2icos p(upbu_y¢) - F(U05U+1) —(uf) =0, (23)

where we used the definition

1 [
=3 s
0
After the straightforward but lengthy calculation we find the dispersion
/‘101301&.’14 + (AOQBO] + A0 BO- + AOaBOa)Uf + AO,BO,; = 0, (24)
where:

A0, = PB(ugehy),

AO; = —2(2cos? ¢(uonge)B(U§¢)),

AO3 = 2cos ¢(B(uog Po) + xn{uoeQoc) — nB(u0eQ2¢)),
BO, 1(x{u0Qo) — Blu0Q2)),

BO, = 26(2 cos? ¢(uge Po) — n(ud)),

BO3 = 2cosé(n(uoQo) — B{uoePo)).

Il

Firstly, we discuss the ‘soliton’ case for relatively small amplitude waves. We
should recover those results for the cubic nonlinear Schrodinger equation obtained
by Infeld and Rowlands [11] and for the nonlinear exponential Schrodinger
equation by Infeld and Ziemkiewicz [5]. One-dimensional case has already
been discussed by Murawski and Koper [4].

THE ‘SOLITON' CASE

We have a range of periodic waves for ljin < | < lpiaz and | < lpjn. For l = lip
and | = I,z there are the linear wave and the soliton, respectively. We consider
both small and large amplitude waves cases (larger amplitude waves correspond to
smaller values of p):

a) small amplitude case

Maximum value of the imaginary part of w is plotted versus an angle of the
disturbances and the parameter [ corresponding to a wave amplitude. The cases
lmin < | < lpae and [ < iy, are shown in Figs. 1 and 2, respectively. We learn
that for I, < | < lnar all periodic waves are unstable to the two-dimensional
disturbances. For | < l,,;n a maximum value of the imaginary part of w is very small
and this practically means that waves are stable for the perturbations because of
the numerical accuracy of the calculations of the roots (10~%) and integrals (10~%).
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Fig. 3. As for Fig. 1, but b = 0.99 and 0 = 0. A case of larger amplitudes

These two figures also show that the soliton corresponding to | = lyn,. is one-
-dimensional stable entity but unstable to perpendicular perturbances.

b) large amplitude waves

For large amplitude waves we notice that periodic waves for l,,;, < | < l,,,4, are
only unstable both at the linear wave and soliton limits and this instability exists
for all angles of the perturbations. For other values of | periodic waves are stable
with respect to perturbations propagating at arbitrary angles. See Fig. 3 for details.

We observe in the case of { < I, (Fig. 4) that the qualitative nature of the
stability does not change for large amplitude waves.

THE ‘PERIODIC WAVE' CASE

In this case we have got the range of periodic waves for 1 > a/p. All these waves
are practically stable with respect to two-dimensional perturbances. The waves are
most unstable with respect to parallel perturbances and the growth-rate becomes
larger for smaller values of I. Although very small values of the growth-rate are
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Fig. 4. As for Fig. 3, but for | < lymazx



325

Two-Dimensional Stability of Nonlinear Exponential. ..

O

X
&
X

&
e
8K
o
%
&

.’
%
&
X
&
&
X
&
%
&

Q)
Q)

&
55

X
&S
%

0
%
&
0%
%
S

X

&
%
‘.

%
%

9

////////////

S
0:0’
"
o
X

%
%
X

%
5

%
&

&
0%
&S

&

K

%
%
&
&
X
&
X
&
&
&
X
%
8K

..
&
&
&
%
%
&
&
&
%
K

moxy (e omega//

G L7 8 a5

\éz////////
3
@,

)
O

O
0.0
0.0
0.0
0.0
0.0
)

&
X
&

%

%
&
&
&
&
X
..
&

&
0%

XX
0.0,
@ G
G
G0
Yo%

)

X
RS
&

&

&

&

..
O
O
()
O
O
O
)
O
0
O
O
O
)
%
0.0

.’

0
@

Fig. 5. As for Fig. 1, but for a =1, 5 = =3 and ¢ = 1. A case of periodic waves
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observed, they are below an accuracy of the method. See Fig. 5. The qualitative
nature of the stability does not depend on values of the wave amplitudes. For larger
amplitudes waves are even slightly more stable in that the corresponding growth-
-rate is smaller.

THE 'SHOCK-WAVE' CASE

We have a range of periodic waves for ljyin < | < lyar. Forl = 1,,;, and | = 1,42
there are the linear wave and shock-wave, respectively.

a) Small amplitude waves

In this case, the waves are most unstable to perpendicular disturbances and
at the shock-wave limit. The growth-rate is about 0.1. However, the shock-wave is
stable to two-dimensional perturbances. See Fig. 6.

b) Large amplitude waves

This is the case similar to the case of small amplitude waves. The corresponding
growth-rate is a little bit smaller, however. See Fig. 7.
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Fig. 6. As for Fig. 1, but for a = -1, b = —1.5 and ¢ = 2. The ‘shock-wave' case. The smallest
and largest values of | correspond to a linear wave and the shock-wave, respectively. The small
amplitude limit
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Fig. 7. As for Fig. 6, but for b = —1.99 and c = 2 and larger amplitude waves

In the summing-up it can be said that the Infeld-Rowlands method has been
developed to study stability of stationary waves as solutions of the nonlinear
exponential Schrédinger equation, with respect to small amplitude and long wave
disturbances. The obtained results fully agree in small amplitude limit with those
for the cubic nonlinear Schrédinger equation [11] and in the ‘soliton’ case with those
discussed by Infeld and Ziemkiewicz [5]. .
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