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Two-Dimensional Stability of Nonlinear 
Exponential Sclirodinger Waves

We consider the two-dimensional exponential nonlinear Sclirodinger equation 

itif +  V 2u -f a [l — e- ^ ^  = 0. (1)

One-dimensional version of this equation has been introduced recently to 
nonlinear plasma physics by D*Evel yn and Mo r a l e s  [1], Kaw  et al. [2] 
S h e e r i n g  and O n g [3] and to nonlinear optics by Mu r a w s k i  and K o p e r  [4].

Transverse stability of solutions of the exponential nonlinear Sclirodinger 
equation has been studied by several authors [5-9]. Particularly, Infel d and 
Z i e m k i e w i c z  [5] have shown that all stationary entities are unstable with respect 
to two dimensional perturbations. The authors consider only a case of the positive 
value of o r .  This case corresponds to periodic waves and a soliton as solutions 
of equation (1). A variation of action method has been applied by A n d e r s o n ,  
B o n d e s o n ,  L i s a k  [6] to find that the solitons are stable for all transverse wave 
numbers k > k C} where kc is the so-called cut-off wavenumber. In contrast to one
-dimensional solutions, which are always transversely unstable (existence of the 
cut-off), there exist completely stable 3-dimensional solutions of the vectorial ex
ponential nonlinear Sclirodinger equation if the wave amplitude exceeds a critical 
threshold. The solutions are also stable with respect to perturbations which de
pend on the radius only, but for azimuthally dependent perturbations instability 
exists. These results have been checked by L a e d k e  and S p a t s c h e k  [7,9] to 
prove fairly good agreement. A Liapunov functional method has been used by 
B l a h  a, L a e dke ,  S p a t s c h e k  [9] to assert that the solutions of the scalar ex
ponential nonlinear Sclirodinger equation are two-dimensionally completely stable. 
The corresponding formulae are easily obtained by the estimation of those for the 
one-dimensional case. See Mu r a ws k i  [10] for the corresponding calculations for 
other equations.



In this paper we will apply I n f e l d - R o w l a n d s  [11] method for the nonlinear 
exponential Schródinger equation. Wherever possible the obtained results will be 
compared with those for the nonlinear Schródinger equation obtained by I nf el d  
and R o w l a n d s  [11] and for the nonlinear exponential Schródinger equation by 
I nf el d and Z i e mk i e wi c z  [5]. The latter authors have studied only a family of 
solutions which contain the soliton solution.

We now lood for stationary envelope solutions

U = uo(0  S cX!2+ht\ (2)

where £ = x — ct. Equation (1) leads to

“  Puo “  a u oe ° = 0, (3)

where we defined o
p = b + - - a .

4
Upon integration of equation (3) multiplied by we get

= pul -  cve"u“ +  pi =  Y(u0), (4)

Here / is another integration constant.
The qualitative nature of the solution of the equation may be determined from 

consideration of the function Y(uo) which should be bounded for bounded wo and 
must possess double roots. It holds when

Y'(tio) = Y (u0) =  0.

Hence, we find the condition for a  and p:

p a  < 0, p (a  +  p) < 0 (5)

and values of / corresponding to the double roots:

lm in tmax =  min.max j^ ,l i i  ( " )  -  1 j  • (6)

We consider now the case of a  > 0 assuming that the conditions (5) are fullfiled. 
We call this case the ‘soliton* case. For / = /mar and / = /min we have linear 
waves and soli tons as solutions of equation (4). There are periodic waves both for 
^ m a x  >  l  I m i n  and /  <  /m in*

A second case we will take into consideration is for a  > 0 and

P < 0, p ( a - j - p) >0 .  (7)

For 1 > j  there is a range of periodic waves as solution of equation (4). For 
1 = j  there is a linear wave. If conditions (5) are satisfied we have a range of



periodic waves for /min < / < lmax. For / = lmax there are the linear wave and 
shock-wave, respectively. We call this case the ‘shock-wave’ case.

A third case we discuss here is for a  > 0 and p < 0. For 1 = a / p  there is 
a linear wave and for 1 > a / p  there are periodic waves only. We call this case the 
‘periodic-wave’ case.

We superimpose a small disturbance of envelope with a long wavelength and 
small amplitude upon the steady state given by equation (4):

u =  [«0(O +  Sui(£) ei(l''(+k*y+“ T) +  0ii2(f)e- <(*1<+*a«'+"* T>] S eX!2+ht\ (8)

Here, we introduced coordinates of the moving frame

£ =  x — ct , t = t, (9)

and
k\=kcos<j>, &2 = &sin0,

where <j> is an angle between the wavevector k and the x axis. The star denotes 
a complex conjugate. Substituting (8) into (1) and dropping nonlinear terms, we 
find

L<5u+ — u>6u_ +  2iki6u+ę — k 2 6u+ = 0, (10)

LSu_ — CJÓU+ -I- 2ik\6u-ę — k 26u_ =  0, (11)

where the following notation is used:

L =  dę — p -  a e

L = L +  2auoe~ti°,

6u± =  6u\ ±  6u\%

and where the asterisk denotes the complex conjugate. In further calculations we 
assume k to be small (with respect to a wavelength of the basic wave) and use the 
following expansion

u =  kuji +  k 2U2 (12)

6n+ =  6u+o 4- k 6u+i +  • • •, (13)

6ii-  =  K ( 6u- q -f- k ó u -1 -b • • •). (14)

Here A', is an arbitrary constant. The discussion of expansion (12) is presented 
by I nf e l d  and R o w l a n d s  [11].

From the zeroth-and first-order equations in k y after an elimination of secular 
terms, we obtain

<5u_0
o

<$ t£_ i

ĆU + 0

Wo,
Woo

2i cos <f>K — u;i
Uo +  2 VT  — Po'

1 b) 1 A"
«0f +  -= (2 c ° s 0  +  iwKn)Qo +  ——  Q2,

Zfj Ł

(15)
(16)

(17)

(18)



where:

“ o /  - 1
7  «o

/  “T "  =  /?£wo* +  Q o ( O i

I  “i
“H J  l i

xoe

°2̂  = k£u0t + Q2« ) .  
OC

(19)

(2 0 ) 

(21 )

Here, Po. Qo and Qn are periodic functions with the same period as the nonlinear 
wave 7A.

Fig. 1. A maximum value of the imaginary root of the dispersion relation plotted versus the 
parameter l and an angle 0, which changes between 0 and ir. Here or = 1 ,6  =  0.25, c =  1 and 
Imax < l < /min* The smallest value of / corresponds to the soliton. A case of small amplitude

waves





From the second-order in fc, we find

2icos<j>(uoę6u+i) —uiI<(uoę6ii-i) -  (u^) = 0, (22)

2icos<f>(u0S u -H) -  ^-(ti0<$ti+1) -  (ul) = 0, (23)

where we used the definition

After the straightforward but lengthy calculation we find the dispersion 

AOiBOiu>i (AO2BO 1 + AO1BO2 A O sB O stó AO2BO 2 — 0, (24)

where:

AO 1 = 0(uotPo),
A 0 2 = - 2?j(2 cos2 4>{uo(Qo()/3(ulę}),

AO3 =  2cOS<£(/?(li0f^o) +  M)(u0(Q o() ~ T)P(U0(Q 2()),
B O i =  t)(k (u0Qo) - P { uqQ2)),

B O 2 =  2/3(2 cos2 <j>(u0( P0) -  r/(«o)).
BO 3 =  2 cos<P(t)(u0Q0) -  /3(u0{P 0)).

Firstly, we discuss the ‘soliton’ case for relatively small amplitude waves. We 
should recover those results for the cubic nonlinear Schródinger equation obtained 
by I nf el d and R o w l a n d s  [11] and for the nonlinear exponential Schródinger 
equation by I nfel d and Z i e mk i e w i c z  [5]. One-dimensional case has already 
been discussed by Mu r a w s k i  and K o p e r [4].

THE ‘SOLITON’ CASE

We have a range of periodic waves for /mm < / < lmax and / < /m,n. For / =  /min 
and / =  lmax there are the linear wave and the soliton, respectively. We consider 
both small and large amplitude waves cases (larger amplitude waves correspond to 
smaller values of p):

a) small amplitude case
Maximum value of the imaginary part of u  is plotted versus an angle of the 

disturbances and the parameter / corresponding to a wave amplitude. The cases 
Imin <  f < ^max and / < /min are shown in Figs. 1 and 2, respectively. We learn 
that for lmin < l < lmax all periodic waves are unstable to the two-dimensional 
disturbances. For l < /min a maximum value of the imaginary part of u  is very small 
and this practically means that waves are stable for the perturbations because of 
the numerical accuracy of the calculations of the roots ( 10“ 6) and integrals ( 10- 4 ).



These two figures also show that the soliton corresponding to / = lmax is one
-dimensional stable entity but unstable to perpendicular perturbances.

b) large amplitude waves
For large amplitude waves we notice that periodic waves for /rmn < / < lmax are 

only unstable both at the linear wave and soliton limits and this instability exists 
for all angles of the perturbations. For other values of / periodic waves are stable 
with respect to perturbations propagating at arbitrary angles. See Fig. 3 for details.

We observe in the case of l < lmin (Fig. 4) that the qualitative nature of the 
stability does not change for large amplitude waves.

THE ‘PERIODIC WAVE’ CASE

In this case we have got the range of periodic waves for 1 > a /p .  All these waves 
are practically stable with respect to two-dimensional perturbances. The waves are 
most unstable with respect to parallel perturbances and the growth-rate becomes 
larger for smaller values of /. Although very small values of the growth-rate are







observed, they are below an accuracy of the method. See Fig. 5. The qualitative 
nature of the stability does not depend on values of the wave amplitudes. For larger 
amplitudes waves are even slightly more stable in that the corresponding growth
-rate is smaller.

THE ‘SHOCK-WAVE’ CASE

We have a range of periodic waves for < / < /mrt-r. For / = /,mrl and / = lmax 
there are the linear wave and shock-wave, respectively.

a) Small amplitude waves
In this case, the waves are most unstable to perpendicular disturbances and 

at the shock-wave limit. The growth-rate is about 0.1. However, the shock-wave is 
stable to two-dimensional perturbances. See Fig. 6.

b) Large amplitude waves
This is the case similar to the case of small amplitude waves. The corresponding 

growth-rate is a little bit smaller, however. See Fig. 7.

Fig. 6. As for Fig. 1, but for a  = —1 * 6 =  —1.5 and c = 2. The ‘shock-wave* case. The smallest 
and largest values of / correspond to a linear wave and the shock-wave, respectively. The small

amplitude limit



Fig. 7. As for Fig. 6, but for 6 =  —1.99 and c =  2 and larger amplitude waves

In the summing-up it can be said that the Infeld-Rowlands method has been 
developed to study stability of stationary waves as solutions of the nonlinear 
exponential Schrodinger equation, with respect to small amplitude and long wave 
disturbances. The obtained results fully agree in small amplitude limit with those 
for the cubic nonlinear Schrodinger equation [11] and in the ‘soliton’ case with those 
discussed by Infel d and Z i e mk i e wi c z  [5].
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