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The G enerator Coordinate Approach to A —► N7 Decay 
w ithin a Non-Relativistic Deformed Quark Model

There are many theoretical and experimental papers concerning the electric 
quadrupole (E2) and magnetic dipole (Ml) transitions amplitudes in the process 
A —► N7 because the mixing ratio 6(E2/M1) may be a good test for the quark 
models of hadron structure [10]. In the simple SU(6) quark model the E2 amplitude 
for the electromagnetic A resonance decay vanishes [11], but experiments indicate 
a non-zero 6(E2/M1) mixing ration [6]. Our model which is a non-relativistic 
approach predicts Ml as well as E2 non-zero transitions amplitudes for the process 
A —► N7 suggesting a possible deformation of the A resonance.

The papers [1,2] calculations of the electric quadrupole (E2) and magnetic dipole 
(Ml) transition amplitudes in the process A —► N7 in the longwave approximation 
(gr < 1) have been done. The obtained results encourage us to treat that problem 
in a more precise way i..e. to obtain the transitions amplitudes and their mixing 
ratio 6(E2/M1) for the decay without longwave approximation.

The main assumption of the model is that barions can be deformed in their 
ground state configurations and this is the reason of non-vanishing mixing ratio 6. 
In order to calculate the Ml and E2 transition amplitudes we use the generator 
coordinate method developed in [1]. The basic assumption of the present consi­
derations is that the photon absorption by the nucleon is due to the collective 
(rotational) excitations of three constituent quarks. This assumption allows to con­
struct a proper class of generator functions. The interaction between the hadron 
and emitted photon is taken in the standard form [3, 4]

Hint =  ̂J} ( r )  ■ A(i)d3r, ( 1 ) '

where j(F) denotes the current of the quarks in the hadron operator which is defined



by the following formula [2,7]

J(f) = Y ^ e{T3 + l ) ^ h ^ 6 ( T - ^ )  + 6 ( T - ^ ) ^ ]  +
k =  l
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(2)
k = l

and A(r) is the electromagnetic field of the photon with the momentum q and 
polarization e. The field A(r) have the following expansion

A (t) = yjAn/2qe [a+el* r + aqe r ] (3)

Taking advantage of the formulas (1), (2), (3) one obtains [3,4] the following 
form of the interaction hamiltonian:

H\nt —
2m, + j?)* [ - 2*>®<t) • q x (A(r<L)) + (p(t) + p,(t)) • A(F<k))

i k=i

where e(73 + | )  denotes the quark electric charge operator (T3 — the third 
component of quark isospin operator), mq is the quark mass, 7 is the quark 
gyromagnetic ratio, s denotes the quark spin operator and p and p' are the initial 
and final momentum of the emitting or absorbing photon quark, respectively.

Making use of the symmetry S(/(6) ® 0(3) of the overall hadron wave function 
and expressing the interaction operator in the new coordinate frame by taking the 
photon momentum direction q as the quantization axis and restricting attention to 
the photon with right-handed polarization e = — \/y/2 (l,i,0) one obtains a simpler 
form of the interaction operator [3]

t f in t  =  6 ^ f i ( T 3 +  ^ ) (3) e x p ( - i 9 z ( 3 ) ) [ g 4 3) -  P | 3 )/ 7 ],

where 5+ = sx + isy and P+ = px + ipy.
The photoexcitation, or the electromagnetic decay of the A resonance can be 

completely specified by the helicity amplitudes [3,5] defined as matrix elements 
of interaction operator between states with different spin projections on the 
quantization axis (M = | ,  ^):

=  (4)

The states |JM TM t ',^) are the wave functions describing deformed barions 
either A or TV (J — spin, M — spin projection, T  — isospin, Mt — isospin 
projection in the isospin space, A — deformation parameter).

By means of the helicity amplitudes one can express the electromagnetic 
transition amplitudes in the following way [5]



M(E2) = - ^ A il2- A zl2)/2VŻ, (5)

M( Ml) = -(>41/2 + \fZA3/2)/2.

In order to calculate matrix elements (4), one needs the wave functions 
\JMTMt \ A) expressed in the laboratory frame. These wave functions can be ob­
tained in the way analogous to the one described in [1]

\j m t m t \X) = d(j,T- X) j  dndZDi;1/2(Q)Dl;Tl/2(z)\nE-,\), ( 6)

where d(j}T\ A) = (dim(J) dim(T)/A(J,T; A))1/2 
and

A /  T >r»m \ \ _  / o f  \  -  1 f  j  o o ̂ rnm i@) ^     ______ ^A(J,T; A) = (3<5t ) ^  d/*sin/7— 2^ 1/2 3̂— , /? = S22, m = - .

|QE; A) is the generator function, Q = (Qi ,Q2,Q3), H = (Hi, H2, H3) are 
Euler angles in the position and isospin space, respectively, and D*mk (a,/?, 7) = 
exp(—ima)dJmk(0) exp(-iky)  are the SU(2) Wigner functions, g. and St are defined 
in the Appendix [see also 1,2]. To construct the generator function first of all we 
introduce the scaling operator and an undeformed state |$o) defined below

A'(A) := exp(—AA') (7)

with K  = Y^\=\(zn^ —b |)  and n = 1,2 and 3 denoting z coordinate of the first, 
second and third quark in a nucleon. Using (7) and an undeformed (A = 0) state 
|«o) one can write the deformed state as

l*o (A )) =  A'(A)| * 0). (8)

For simplicity we choose the following group of motion G = SUt (2) x  SUj (2) 
which is a symmetry group of our quark system. To obtain a realistic space of 
states the vector |$o) should contain the SU^(3) octet and it should belong to 
56-dimensional irreducible representation of the SU(6) group. Such a state is of the 
following form

|$o) = |color||singlet)|spin — isospin) |space),

where
|spin — isospin) = (3)“ 1̂ 2(u|ti|dj + 4- )

and
|space) = ^o(l)0o(2)<Ao(3).

This form is much simpler in applications than the known proton function, see 
e.g. [8]. In our calculations <f>o(k), k = 1,2,3 is assumed to be the 3-dimensional 
harmonic oscillator ground state function. Let R(Q) £ SUj(2) and (7(H) £ SUj(2)



be the rotational operators in coordinate-spin space and in the isospin space, 
respectively. Then the full generator function

|fi.S;A) = 7i(n)G(S)|*0(A)). (9)

The matrix elements of the interaction operator between states (6) can be 
reduced to the following form:

v22
1 /  q q i i  \ -1/2

x (10)

j  d% sinn,2Ą * 1/2(n ,2)dJ^1/2(n,2) x 

j  d^2sinQ2dlJ i /21/2(^2)dlJ ^ 2l/7{^2) x

(b g  ̂ ) exp{—(gx92z + gzgxx — ^9x929x2)1^9}
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/ 9 9 1 1  \ -1/2
- l / 3^ ^ ( ^ A ( - , - ; A ) A ( - , - ; A ) J  x (11)

£  dn2sinn2d |^ 1/2(n2)d}'’1/ 2(n2) x

(62<?1/2)“3exp{-(^</„ -  23x̂ 3xj) /4<?}.

The abbreviations used in these formulae are explained in the Appendix. The 
above integrals have been calculated numerically with the following parameters:

— momentum of photon y : q = 300 MeV,
— width of Gaussian distribution of quark in the single quark function $o(k) : 

b = 0.46 fm see [9],
— quark magnetic moment (which is taken equal to the proton magnetic 

moment): // = 0.13 GeV-1 .
The numerical calculations lead to the dependence of ratio 0(E2/M1) on the 

deformation parameter shown in Fig. 1. The deformation parameter 0 = ex 
represents a ratio of z-axis elongation of the nucleon elipsoidę in respect to the 
perpendicular one.

The experimental value of the ratio 6(E2/M1) is (1.3 ± 0.5)% [6]. There are 
two deformation parameters corresponding to the experimental data: 0 = 0.6 and 
0 = 1.75. The first value (0(1) suggests the oblate and second (/?)1) — prolate

2;A|^i„,|2 2 2 2 :A> =

A|//int|----------;A =)
22 2 222 'A \ / 2  —
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deformation parameter 0

The mixing ratio <5(E2/Ml) as a function of the deformation parameter (3 — t x is shown

deformation of nucleon. The obtained value of prolate deformation is only slightly 
larger comparing with that one obtained from minimum of energy (0 — 1.55) [1] 
and from the longwave approximation (0 = 1.2 — 1.3) [2]. The results of the above 
calculations confirm qualitatively that hadrons are deformed in their ground states 
and that the deformation is rather large.

APPENDIX

In the Appendix we list the abbreviations used in the formulae (6), (10) and (11):

St — <$7T/2 “b 4&T3/2i

9.CX =  (1 - f  cos2 0  +  e~2X s in 2 0 ) / 2 b 2,

Urz =  ( e - A  — e A) c o s 0 s \n 0 / 2 b ,

9zz =  (1  +  e2X s in 2 0  -b cos2 0 ) / 2 b 2)

9 — 9x.rQzz ~  ( i fx ^ )” -



REFERENCES

[1] K r a ś k i e w i c z  J., Ann. UMCS, sect. AAA, 45/46 (1990/1991).
[2] K r a ś k i e w i c z  J., Ann. UMCS, sect. AAA, 45/46 (1990/1991).
[3] C o p l e y  L. A., K a r l  G., O b r y k  E., Nuci. Pkys., B 13 (1969), 303.
[4] F a i m  a n  D., H e n d r y  A. W., Pkys. Rev., ISO, 5 (1969), 1572.
[5] G e r s h t e i n  S. S., D z h i k i y a  D. V., Jadernaja fizika, 34, 6 (1981), 1566.
[6] Particle Data Group, Pkys. Lett., B 170 (1986).
[7] B o h r  A., M o t  te  Is on  B. R., Struktura jądra atomowego. Ruch jednocząstkowy. I, PWN,  

Warszawa 1975.
[8] H u a n g  K., Quarks Leptons and Gauge Fields, World Scientific, 1982.
[9] M u r  t h y  M. V. N.. B r a c k  M., B h a d u r i  R. K., J e n n i n g s  B. K., 2. Pkys., C29 (1985). 

385.
[10] M u r t h y  M. V. N., B h a d u r i  R. K., Pkys. Rev. Lett., 54 (1985). 745; D a v i d s o n  R.,  

M u kh op  ad hy  ay  N. C., W i t t  m a n  R., Pkys. Rev. Lett., 56 (1986), 80J; W a r n s  M., 
S c h r o d e r  H., P f e i l  W., R o l l n i k  H., Z. Pkys., C45 (1990), 613.

[11] B e c c h i  C., M o r p u r g o  G., Pkys. Lett.., 17, 3 (1965), 352.


